期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于深度自编码多维特征融合的慢动目标检测 被引量:3
1
作者 张文涛 许治国 +1 位作者 郑霖 杨超 《计算机工程》 CAS CSCD 北大核心 2019年第5期143-148,154,共7页
针对强杂波环境下慢动目标检测存在的多普勒频移低、杂波干扰强、特征提取困难等问题,提出一种多维特征融合的检测算法。利用时频变换和脉冲压缩解析回波信息,提取目标回波时频域和距离像的特征,将特征串联输入到深度自编码网络中进行... 针对强杂波环境下慢动目标检测存在的多普勒频移低、杂波干扰强、特征提取困难等问题,提出一种多维特征融合的检测算法。利用时频变换和脉冲压缩解析回波信息,提取目标回波时频域和距离像的特征,将特征串联输入到深度自编码网络中进行融合。深度自编码网络通过自主学习提取目标不同维度的特征,增强多维特征联合检测性能。仿真结果表明,与直接利用单域特征的深度自编码以及利用SVM进行目标检测的算法相比,该算法能有效融合时频域与距离像特征,实现特征互补,提高目标检测的鲁棒性与识别精度。 展开更多
关键词 目标检测 深度自编码 特征提取 多维特征融合 时频变换 脉冲压缩
在线阅读 下载PDF
基于密集连接网络和多维特征融合的文本匹配模型 被引量:4
2
作者 陈岳林 田文靖 +1 位作者 蔡晓东 郑淑婷 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第12期2352-2358,共7页
针对文本匹配过程中存在语义损失和句子对间信息交互不充分的问题,提出基于密集连接网络和多维特征融合的文本匹配方法.模型的编码端使用BiLSTM网络对句子进行编码,获取句子的上下文语义特征;密集连接网络将最底层的词嵌入特征和最高层... 针对文本匹配过程中存在语义损失和句子对间信息交互不充分的问题,提出基于密集连接网络和多维特征融合的文本匹配方法.模型的编码端使用BiLSTM网络对句子进行编码,获取句子的上下文语义特征;密集连接网络将最底层的词嵌入特征和最高层的密集模块特征连接,丰富句子的语义特征;基于注意力机制单词级的信息交互,将句子对间的相似性特征、差异性特征和关键性特征进行多维特征融合,使模型捕获更多句子对间的语义关系.在4个基准数据集上对模型进行评估,与其他强基准模型相比,所提模型的文本匹配准确率显著提升,准确率分别提高0.3%、0.3%、0.6%和1.81%.在释义识别Quora数据集上的有效性验证实验结果表明,所提方法对句子语义相似度具有精准的匹配效果. 展开更多
关键词 语义损失 信息交互 BiLSTM网络 密集连接网络 注意力机制 多维特征融合
在线阅读 下载PDF
多维特征融合与Adaboost-SVM的车辆识别算法 被引量:14
3
作者 崔鹏宇 《控制工程》 CSCD 北大核心 2019年第3期608-612,共5页
为了解决车辆目标特征不明显而导致识别率低的问题,提出了基于多维特征融合与Adaboost-SVM强分类器的车辆目标识别算法。首先,根据车辆目标几何特征、颜色特征和纹理特征,融合为多维特征向量,达到组建强特征向量的目的。然后,融合Adabo... 为了解决车辆目标特征不明显而导致识别率低的问题,提出了基于多维特征融合与Adaboost-SVM强分类器的车辆目标识别算法。首先,根据车辆目标几何特征、颜色特征和纹理特征,融合为多维特征向量,达到组建强特征向量的目的。然后,融合Adaboost与多个弱分类器,建立强分类器,根据SVM的超优分类平面模型,训练多维特征向量,设计了Adaboost-SVM分类器,达到稳定准确识别车辆目标特征的目的。最后,将样本图像分为训练样本集与测试样本集,通过强分类器,实现并测试车辆目标识别算法。实验测试结果显示:与当前车辆识别技术相比,该算法拥有更高的识别准确度。 展开更多
关键词 车辆识别 多维特征融合 ADABOOST分类器 强分类器 几何特征 纹理特征
在线阅读 下载PDF
基于多维复向特征融合与CNN-GRU的转子不平衡量识别方法
4
作者 王坚坚 廖与禾 +1 位作者 杨磊 薛久涛 《中国机械工程》 北大核心 2025年第9期1905-1915,共11页
现有的无试重不平衡量识别算法采用优化算法框架,通过大量迭代运算以逐步逼近最优解,这类策略普遍收敛速度迟缓且易陷入局部极值。为此,利用神经网络直接学习并解析不平衡振动响应与不平衡量之间的复杂映射关系,进而实现不平衡量的高精... 现有的无试重不平衡量识别算法采用优化算法框架,通过大量迭代运算以逐步逼近最优解,这类策略普遍收敛速度迟缓且易陷入局部极值。为此,利用神经网络直接学习并解析不平衡振动响应与不平衡量之间的复杂映射关系,进而实现不平衡量的高精度识别。通过转子动力学模型进行仿真,构建了带标签的足量不平衡振动数据集。针对不平衡数据的多维复向特性,设计了一种特征融合机制。核心算法层面,结合卷积神经网络(CNN)与门控循环单元(GRU)构建了CNN-GRU混合模型,其中,CNN部分负责从振动数据中提取局部空间特征,GRU负责捕捉振动数据中的时序依赖关系,通过整合空间与时间域的信息,显著增强了模型的泛化能力和识别精度。测试集数据和实验台实验的不平衡量识别结果表明,所提方法可以准确预估识别转子的不平衡量,为无试重现场动平衡提供迅速准确的指导。 展开更多
关键词 转子 无试重 不平衡量识别 卷积神经网络-门控循环单元 多维复向特征融合
在线阅读 下载PDF
基于结构多维特征构建图卷积神经网络的结构损伤识别方法
5
作者 杨建辉 赵清瑄 蒲脯林 《湖南大学学报(自然科学版)》 北大核心 2025年第8期158-171,共14页
以数据为驱动的深度学习结构损伤识别(structural damage identification,SDI)效果受结构复杂程度、模型构建方法及数据规模等因素影响较大.本文引入图卷积神经网络(graph convolutional neural network,GCN)以整合结构节点间的属性特征... 以数据为驱动的深度学习结构损伤识别(structural damage identification,SDI)效果受结构复杂程度、模型构建方法及数据规模等因素影响较大.本文引入图卷积神经网络(graph convolutional neural network,GCN)以整合结构节点间的属性特征,从图的视角挖掘节点间的复杂属性关系,为SDI提供多维度学习信息.为此,设计了一种融合结构多维特征的图卷积神经网络模型(graph convolutional neural network integrating multi-dimensional features of structure,S-GCN),基于结构振动数据构造损伤特征矩阵,并通过衍生图网络,以图的节点和边表征结构节点的连接关系,构建边索引矩阵,将结构损伤状态、振动数据及节点属性等多维特征信息输入GCN进行结构损伤特征提取及预测识别,探索结构多维特征信息驱动下的GCN在损伤预测中的应用效果.通过两个钢结构验证方法的可行性及有效性,结果表明,S-GCN能够整合结构多维特征信息,对两个结构对象均实现了较高的损伤预测准确性,并展现出良好的噪声鲁棒性.进一步的对比分析显示,相较于三种非GCN模型,S-GCN能够高效地依托节点间关系快速更新节点特征并预测节点损伤状态,其损伤识别准确率、计算效率及网络各层演进过程均优于对比模型,验证了在结构损伤识别中融合结构空间特征的有效性. 展开更多
关键词 结构损伤识别 图卷积神经网络 结构多维特征融合 噪声鲁棒性 训练效率
在线阅读 下载PDF
双分支多维注意特征融合的高光谱图像分类 被引量:1
6
作者 马亚美 王双亭 都伟冰 《计算机工程与应用》 CSCD 北大核心 2024年第7期192-203,共12页
为改善高光谱图像小样本类别的分类性能,提高模型特征表达的稳健性,提出了双分支多维注意力特征融合的神经网络分类模型(DBMD)。DBMD采用两个分支分别进行光谱特征提取和混合特征提取。光谱分支通过密集连接的扩张卷积逐级提取特征,然... 为改善高光谱图像小样本类别的分类性能,提高模型特征表达的稳健性,提出了双分支多维注意力特征融合的神经网络分类模型(DBMD)。DBMD采用两个分支分别进行光谱特征提取和混合特征提取。光谱分支通过密集连接的扩张卷积逐级提取特征,然后融合低、中、高级语义信息作为特征输出。混合分支采用3D-2D网络架构,并通过改进的Inception块提取空间尺度特征。此外,注意力机制分别应用于光谱、空间和空谱特征,进行特征细化,增强重要区域的特征响应。最后,将不同维度的细化特征联合输入至分类器进行分类。在Indian Pines和Salinas Valley数据集上利用5%和1%的样本进行实验,分别取得了98.40%和99.78%的总体精度,与其他六种网络架构相比,该模型在准确性和稳定性上都具有更优的表现。 展开更多
关键词 混合特征提取 注意力机制 多维特征融合 图像分类
在线阅读 下载PDF
基于多维融合特征和卷积神经网络的多任务用户短期负荷预测 被引量:20
7
作者 臧海祥 许瑞琦 +3 位作者 刘璟璇 陈玉伟 卫志农 孙国强 《电力系统自动化》 EI CSCD 北大核心 2023年第13期69-77,共9页
针对海量用户负荷预测场景下,应用单任务用户负荷预测法所导致的运行效率低以及无法学习相关任务间关联关系等问题,提出一种基于多维融合特征和卷积神经网络的多任务用户短期负荷预测方法。首先,基于聚类技术实现多任务学习中相关任务... 针对海量用户负荷预测场景下,应用单任务用户负荷预测法所导致的运行效率低以及无法学习相关任务间关联关系等问题,提出一种基于多维融合特征和卷积神经网络的多任务用户短期负荷预测方法。首先,基于聚类技术实现多任务学习中相关任务的选择;其次,为每一类用户群构建多维融合输入,合理有序容纳多个任务的特征,避免维度爆炸和信息混乱;最后,分别为每一类用户建立以卷积神经网络为共享层的多任务预测模型,学习共享特征,并行输出相应类中全部用户的负荷预测值。基于爱尔兰能源监管委员会提供的智能电表实测数据进行算例分析,结果表明,该方法在提高整体运行效率和平均预测精度方面均取得良好成效。 展开更多
关键词 海量用户 负荷预测 多任务学习 多维融合特征 卷积神经网络
在线阅读 下载PDF
基于特征融合的调制识别增强与迁移演化 被引量:5
8
作者 钱磊 吴昊 +2 位作者 乔晓强 张涛 张江 《电子测量技术》 北大核心 2022年第18期153-160,共8页
针对调制识别中单一图像的特征信息不足,区分度不够高,识别范围受限的问题。本文提出了一种基于时频图和星座图特征融合的调制识别特征增强方法,利用深度学习神经网络提取信号图像的特征,构建特征空间,通过多维特征融合,挖掘和整合不同... 针对调制识别中单一图像的特征信息不足,区分度不够高,识别范围受限的问题。本文提出了一种基于时频图和星座图特征融合的调制识别特征增强方法,利用深度学习神经网络提取信号图像的特征,构建特征空间,通过多维特征融合,挖掘和整合不同特征的优势,增强模型算法的鲁棒性。此外运用了模型迁移的方法,仅需对分类器进行训练,大幅节约了训练时间和资源,具有很强的实时性和实用性。仿真结果显示,在0 dB左右的条件下,相比于单一特征图像,采用特征融合增强的方法能将信号的平均识别率提高约25%,通过模型迁移,省去了卷积神经网络的训练,所需的训练时间约为迁移前的9.6%,消耗内存约为迁移前的7.3%,同时模型的识别率损失控制在了5%以内。 展开更多
关键词 调制识别 深度学习 图像特征 多维特征融合 迁移学习
在线阅读 下载PDF
多特征融合和尺度变化估计的船舶跟踪方法 被引量:3
9
作者 陈信强 凌峻 +2 位作者 齐雷 杨勇生 周亚民 《计算机工程与应用》 CSCD 北大核心 2021年第13期246-250,共5页
传统的船舶视觉跟踪任务主要集中于单目标船舶跟踪,对多目标船舶跟踪研究相对较少。为解决该问题,提出一种多维特征融合机制和尺度变化估计的多目标船舶跟踪框架,该框架引入位置滤波器对输入的船舶训练样本进行学习,并将其应用于待跟踪... 传统的船舶视觉跟踪任务主要集中于单目标船舶跟踪,对多目标船舶跟踪研究相对较少。为解决该问题,提出一种多维特征融合机制和尺度变化估计的多目标船舶跟踪框架,该框架引入位置滤波器对输入的船舶训练样本进行学习,并将其应用于待跟踪的船舶图片序列,通过寻找最大响应的方法判定图像中的船舶位置。在此基础上,构建船舶尺度估计滤波器以确定待跟踪船舶的图像尺寸。通过和中值流跟踪算法和多示例学习跟踪算法对比分析,实验结果表明不同海事交通场景下的船舶跟踪误差均小于10像素,验证了算法的有效性和可靠性。 展开更多
关键词 多维特征融合机制 尺度变化 相关滤波机制 多目标船舶跟踪 智能船舶
在线阅读 下载PDF
YOLOv8-GAIS:一种改进的无人机航拍目标检测算法 被引量:1
10
作者 李凯璇 刘晓锋 +1 位作者 陈强 张泽江 《光电工程》 北大核心 2025年第4期76-88,共13页
针对昏暗场景中背景复杂导致目标边缘模糊、小目标易被遮挡和误检漏检的问题,提出一种改进的YOLOv8s算法—YOLOv8-GAIS。采用四头自适应多维特征融合(four-head adaptive multi-dimensional feature fusion,FAMFF)策略,过滤空间中的冲... 针对昏暗场景中背景复杂导致目标边缘模糊、小目标易被遮挡和误检漏检的问题,提出一种改进的YOLOv8s算法—YOLOv8-GAIS。采用四头自适应多维特征融合(four-head adaptive multi-dimensional feature fusion,FAMFF)策略,过滤空间中的冲突信息。添加小目标检测头,解决航拍视角下目标尺度变化大问题。引入空间增强注意力机制(spatially enhanced attention mechanism,SEAM),增强网络对昏暗和遮挡部分的捕捉能力。采用更关注核心部分的InnerSIoU损失函数,提升被遮挡目标的检测性能。采集实地场景扩充VisDrone2021数据集,应用Gamma和SAHI(slicing aided hyper inference)算法进行预处理,平衡低照度场景中不同目标种类的数量,优化模型的泛化能力和检测精度。通过对比实验,改进模型相对于初始模型,参数量减少1.53 MB,mAP50提高6.9%,mAP50-95增加5.6%,模型计算量减少7.2 GFLOPs。在天津市津南区大沽南路进行实地实验,探究无人机(UAV)最适宜的图像采集高度,实验结果表明,当飞行高度设置为60 m时,该模型的检测精度mAP50最高为77.8%。 展开更多
关键词 目标检测 低照度图像 四头自适应多维特征融合策略 无人机 YOLOv8
在线阅读 下载PDF
轻量化姿态估计时空增强图卷积模型下的矿工行为识别 被引量:3
11
作者 王建芳 段思源 +1 位作者 潘红光 景宁波 《工矿自动化》 CSCD 北大核心 2024年第11期34-42,共9页
基于骨架序列的行为识别模型具有速度快、算力要求低、模型简单等特点,图卷积神经网络在处理骨架序列数据时具有优势,而现有基于图卷积的矿工行为识别模型在高精度和低计算复杂度之间难以兼顾。针对该问题,提出了一种基于轻量化姿态估... 基于骨架序列的行为识别模型具有速度快、算力要求低、模型简单等特点,图卷积神经网络在处理骨架序列数据时具有优势,而现有基于图卷积的矿工行为识别模型在高精度和低计算复杂度之间难以兼顾。针对该问题,提出了一种基于轻量化姿态估计网络(Lite-HRNet)和多维特征增强时空图卷积网络(MEST-GCN)的矿工行为识别模型。Lite-HRNet通过目标检测器进行人体检测,利用卷积神经网络提取图像特征,并通过区域提议网络生成锚框,对每个锚框进行分类以判断是否包含目标;区域提议网络对被判定为目标的锚框进行边界框回归,输出人体边界框,并通过非极大值抑制筛选出最优检测结果;将每个检测到的人体区域裁剪出来并输入到Lite-HRNet,生成人体关键点骨架序列。MEST-GCN在时空图卷积神经网络(ST-GCN)的基础上进行改进:去除ST-GCN中的冗余层以简化模型结构,减少模型参数量;引入多维特征融合注意力模块M2FA。生成的骨架序列经MEST-GCN的BN层批量标准化处理后,由多维特征增强图卷积模块提取矿工行为特征,经全局平均池化层和Softmax层得到行为的置信度,获得矿工行为预测结果。实验结果表明:①MEST-GCN的参数量降低至1.87 Mib;②在以交叉主体和交叉视角为评价标准的公开数据集NTU60上,采用Lite-HRNet提取2D人体关键点坐标,基于Lite-HRNet和MEST-GCN的矿工行为识别模型的准确率分别达88.0%和92.6%;③在构建的矿工行为数据集上,基于Lite-HRNet和MEST-GCN的矿工行为识别模型的准确率达88.5%,视频处理速度达18.26帧/s,可以准确且快速地识别矿工的动作类别。 展开更多
关键词 矿工行为识别 人体关键点提取 骨架序列 图卷积 轻量化姿态估计网络 特征融合 多维特征融合注意力模块
在线阅读 下载PDF
基于SWPF2vec和DJ-TextRCNN的古籍文本主题分类研究 被引量:1
12
作者 武帅 杨秀璋 +1 位作者 何琳 公佐权 《情报学报》 CSSCI CSCD 北大核心 2024年第5期601-615,共15页
以编目分类和规则匹配为主的古籍文本主题分类方法存在工作效能低、专家知识依赖性强、分类依据单一化、古籍文本主题自动分类难等问题。对此,本文结合古籍文本内容和文字特征,尝试从古籍内容分类得到符合研究者需求的主题,推动数字人... 以编目分类和规则匹配为主的古籍文本主题分类方法存在工作效能低、专家知识依赖性强、分类依据单一化、古籍文本主题自动分类难等问题。对此,本文结合古籍文本内容和文字特征,尝试从古籍内容分类得到符合研究者需求的主题,推动数字人文研究范式的转型。首先,参照东汉古籍《说文解字》对文字的分析方式,以前期标注的古籍语料数据集为基础,构建全新的“字音(说)-原文(文)-结构(解)-字形(字)”四维特征数据集。其次,设计四维特征向量提取模型(speaking,word,pattern,and font to vector,SWPF2vec),并结合预训练模型实现对古籍文本细粒度的特征表示。再其次,构建融合卷积神经网络、循环神经网络和多头注意力机制的古籍文本主题分类模型(dianji-recurrent convolutional neural networks for text classification,DJ-TextRCNN)。最后,融入四维语义特征,实现对古籍文本多维度、深层次、细粒度的语义挖掘。在古籍文本主题分类任务上,DJ-TextRCNN模型在不同维度特征下的主题分类准确率均为最优,在“说文解字”四维特征下达到76.23%的准确率,初步实现了对古籍文本的精准主题分类。 展开更多
关键词 多维特征融合 古籍文本 主题分类 SWPF2vec DJ-TextRCNN
在线阅读 下载PDF
基于语音脑电的双模态心理压力分级评估研究
13
作者 杜扶遥 姜囡 陆思宇 《电子测量技术》 北大核心 2024年第19期114-122,共9页
为了有效提高压力分级方法的精确度,实现多模态信息交互和多维立体融合特征的深层挖掘,提出一种基于模型分级的多模态压力识别方法。基于语音信号振幅特征和脑电信号各频段波幅特征,构建新的心理压力指数模型,并提出针对该模型的心理压... 为了有效提高压力分级方法的精确度,实现多模态信息交互和多维立体融合特征的深层挖掘,提出一种基于模型分级的多模态压力识别方法。基于语音信号振幅特征和脑电信号各频段波幅特征,构建新的心理压力指数模型,并提出针对该模型的心理压力分级方法,有效解决了主观评估精度受限以及压力分类依据不明确等问题。以模型分级为依据重制MAHNOB-HCI数据集标签,构建了包含脑电时频空信息和语音时频信息的立体多维融合特征,避免了单特征识别方法导致的压力信息缺失问题。与单模态识别方法的对比分析,本文提出方法识别准确率分别提高了10.72%和3.36%;与常规双模态方法的对比分析,识别准确率提高了7.51%。综上表明,本文所提方法能够更准确的揭示异构数据全频段信息与心理压力的关联关系,有效提升了识别性能。 展开更多
关键词 脑电信号 语音信号 双模态 心理压力分级 多维融合特征
在线阅读 下载PDF
基于太赫兹时域光谱和机器学习的新旧贝壳识别研究 被引量:2
14
作者 白雪杰 廉飞宇 付麦霞 《中国测试》 CAS 北大核心 2022年第12期172-180,共9页
传统的贝壳检测方法对新旧贝壳的分类精度低,样品破坏程度大,稳定性差,而太赫兹光谱又缺乏可直接人工分辨的特征。为此,提出一种基于太赫兹时域光谱和机器学习的新旧贝壳识别方法。首先采用太赫兹时域光谱系统(THz-TDS)技术,研究新旧贝... 传统的贝壳检测方法对新旧贝壳的分类精度低,样品破坏程度大,稳定性差,而太赫兹光谱又缺乏可直接人工分辨的特征。为此,提出一种基于太赫兹时域光谱和机器学习的新旧贝壳识别方法。首先采用太赫兹时域光谱系统(THz-TDS)技术,研究新旧贝壳太赫兹时域光谱、频域光谱、折射率谱和吸收谱特性。然后使用主成分分析法(PCA)在满足所有主成分的累计贡献率达到80%以上的原则的前提下,提取光谱的特征数据。4种光谱分别提取4、4、5和4个主成分,最后使用Adaboost对主成分进行多维特征融合,将融合后的主成分作为支持向量机(SVM)模型的输入用于识别新旧贝壳的种类,其中通过3种核函数(Linear,Polynomial,Radial Basis Function)的对比分析,选出最佳核函数为Radial Basis Function。结果表明:在使用Radial Basis Function核函数,参数C为2.1、σ为4.4的情况下,PCA—Adaboost—SVM模型对新旧贝壳识别准确率可达到98%。通过与BP神经网络、偏最小二乘回归法(PLS)和主成分回归分析(PCR)方法的比较,PCA—Adaboost—SVM方法具有更高的准确性和更稳定的性能,同时也说明采用太赫兹时域光谱系统技术结合机器学习方法可以精准鉴别新旧贝壳种类。 展开更多
关键词 贝壳 太赫兹时域光谱系统 主成分分析 支持向量机 多维特征融合
在线阅读 下载PDF
基于MDFF与ISSA的滚动轴承故障声发射诊断 被引量:2
15
作者 魏巍 王之海 +2 位作者 柳小勤 冯正江 李佳慧 《振动与冲击》 EI CSCD 北大核心 2023年第7期65-76,共12页
针对滚动轴承早期、复合故障难以准确诊断与智能诊断模型超参数确定严重依赖专家先验知识问题,提出一种基于多维深度特征融合(multi-dimensional depth feature fusion, MDFF)与改进麻雀搜索算法(improved sparrow search algorithm, IS... 针对滚动轴承早期、复合故障难以准确诊断与智能诊断模型超参数确定严重依赖专家先验知识问题,提出一种基于多维深度特征融合(multi-dimensional depth feature fusion, MDFF)与改进麻雀搜索算法(improved sparrow search algorithm, ISSA)的滚动轴承故障声发射诊断方法。用一维卷积与线性瓶颈反向残差二维卷积神经网络构建多输入卷积神经网络(convolution neural network, CNN)结构的诊断模型,模型输入为滚动轴承声发射信号及其小波时频图,提出基于布伦纳梯度和信噪比的质量指标,在108种小波基中筛选出最佳时频图以提升输入数据质量。接着,采用特征金字塔网络将模型的一、二维低层与高层特征融合,建立深度融合的诊断模型。然后,将交叉混沌映射、自适应权重及融合的随机游走策略引入麻雀搜索算法中,以自适应获取MDFFCNN最优超参数。试验表明,对比近期多个主流智能诊断算法,所提方法可避免人工选择诊断模型超参数,对滚动轴承早期尤其复合故障具有更高的诊断精度和稳定性,模型诊断过程的智能化水平得到了进一步提高。 展开更多
关键词 滚动轴承 声发射(AE) 深度学习 改进麻雀搜索(ISSA) 卷积神经网络(CNN) 多维深度特征融合(MDFF) 最佳时频图
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部