期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多尺度局部与全局特征提取的时间序列预测网络
1
作者 王静 王济昂 +1 位作者 丁建立 李永华 《计算机工程与设计》 北大核心 2025年第6期1734-1741,共8页
为有效提取序列数据中的局部与全局变化,并对多尺度特征进行建模,提高时间序列预测准确率,提出一种基于多尺度局部与全局特征提取的时间序列预测网络。多尺度特征捕获模块使用多个不同大小的卷积提取序列中多周期的特征;关注对周期性序... 为有效提取序列数据中的局部与全局变化,并对多尺度特征进行建模,提高时间序列预测准确率,提出一种基于多尺度局部与全局特征提取的时间序列预测网络。多尺度特征捕获模块使用多个不同大小的卷积提取序列中多周期的特征;关注对周期性序列的建模,利用多尺度时序分离模块,使用平均池化分离得到时间序列的周期性和趋势性部分;局部与全局特征模块对序列中的局部变化和全局趋势进行建模。实验结果表明,所提算法在4个数据集上的预测效果均优于相关基线算法。 展开更多
关键词 多维时间序列预测 局部与全局特征 多尺度 卷积神经网络 时序分解 特征提取 深度学习
在线阅读 下载PDF
多维时间序列的组合预测模型 被引量:7
2
作者 赵亚伟 陈艳晶 《中国科学院大学学报(中英文)》 CSCD 北大核心 2016年第6期825-833,共9页
由于时间序列在各领域的广泛应用,时间序列预测已经引起越来越多的关注,但关于多维时间序列的预测关注较少.然而,多维时间序列蕴含着丰富的信息.针对该问题,提出基于k近邻(k-nearest neighbor,k-NN)和BP神经网络的多维时间序列组合预测... 由于时间序列在各领域的广泛应用,时间序列预测已经引起越来越多的关注,但关于多维时间序列的预测关注较少.然而,多维时间序列蕴含着丰富的信息.针对该问题,提出基于k近邻(k-nearest neighbor,k-NN)和BP神经网络的多维时间序列组合预测模型.首先分别采用k-NN和BP神经网络进行预测,得到对应的预测结果.然后使用BP神经网络进行非线性组合,得到最终的预测结果.实验表明,该预测模型优于k-NN和BP神经网络预测模型. 展开更多
关键词 多维时间序列预测 K-NN BP神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部