期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
鲁棒物联网多维时序数据预测方法
1
作者 沈忱 何勇 彭安浪 《计算机工程》 北大核心 2025年第4期107-118,共12页
在物联网(IoT)场景中,数据在采集和传输过程中易受噪声的干扰,导致数据中存在一定的离群值与缺失值。现有的时间正则化矩阵分解模型通常考虑平方损失来衡量重构误差,忽略了处理存在异常数据的多维时间序列时,矩阵分解的质量同样是影响... 在物联网(IoT)场景中,数据在采集和传输过程中易受噪声的干扰,导致数据中存在一定的离群值与缺失值。现有的时间正则化矩阵分解模型通常考虑平方损失来衡量重构误差,忽略了处理存在异常数据的多维时间序列时,矩阵分解的质量同样是影响模型预测性能的关键因素。提出一种基于L_(2,log)范数的时间感知鲁棒非负矩阵分解多维时序预测框架(TARNMF)。TARNMF通过非负矩阵分解(NMF)和参数可学习的自回归(AR)时间正则项建立多维时序数据的时空相关性,基于存在离群值的数据服从拉普拉斯分布的假设,使用L_(2,log)范数来估计非负鲁棒矩阵分解中原始数据和重建矩阵的误差,以减小异常数据对预测模型的干扰。L_(2,log)范数具备现有鲁棒度量函数的性质,解决了L_(1)损失的近似问题,并通过压缩异常值的残差来减少其对目标函数的影响。此外,提出一种基于投影梯度下降的优化方法对模型进行优化。实验结果表明,TARNMF具有良好的可扩展性和鲁棒性,尤其在高维Solar数据集上,较次优结果的相对平均绝对误差降低了8.64%。同时,在噪声数据上的实验结果验证了TARNMF能高效地处理和预测存在异常数据的IoT时序数据。 展开更多
关键词 L_(2 log)范数 非负矩阵分解 时间正则化矩阵分解 多维时序数据预测 鲁棒性
在线阅读 下载PDF
融合双注意力机制的GNN多维时间序列预测 被引量:1
2
作者 范航舟 梅红岩 +2 位作者 赵勤 张兴 程耐 《智能系统学报》 CSCD 北大核心 2024年第5期1277-1286,共10页
针对现有多维时间序列数据(multivariate time series,MTS)预测中变量间依赖关系捕获能力不足和时间序列数据多通道信息利用不充分的问题,提出一种融合双注意力机制的多维时间序列预测模型(feature fusion and dual attention mechanism... 针对现有多维时间序列数据(multivariate time series,MTS)预测中变量间依赖关系捕获能力不足和时间序列数据多通道信息利用不充分的问题,提出一种融合双注意力机制的多维时间序列预测模型(feature fusion and dual attention mechanism based GNN,FFDA-GNN)。该模型将图神经网络与空间注意力机制融合,用于增强多变量之间依赖关系捕获能力;利用并行的多层膨胀卷积和通道注意力机制,对时间序列数据进行多通道的特征提取,实现对时间序列数据多通道信息的充分利用,从而提升预测性能。在经济、电力、交通3个领域数据集上与基准模型进行对比实验,该模型预测精度优于其他基准方法,有良好的可行性。 展开更多
关键词 多维时序预测 图神经网络 注意力机制 特征融合 时间卷积网络 深度学习 卷积神经网络 时空特征
在线阅读 下载PDF
融合延迟变换和张量分解的金融时序预测算法 被引量:3
3
作者 李大舟 于锦涛 +2 位作者 高巍 陈思思 朱风兰 《计算机工程与设计》 北大核心 2022年第5期1295-1303,共9页
金融时序预测可以为从业人员提供行业变化趋势信息。采用多路延迟嵌入变换将时间序列转化为低秩块Hankel张量,利用Tucker分解将高阶张量投影到压缩核心张量中,对核心张量使用季节性差分自回归滑动平均算法实现对未来的预测。在4个公共... 金融时序预测可以为从业人员提供行业变化趋势信息。采用多路延迟嵌入变换将时间序列转化为低秩块Hankel张量,利用Tucker分解将高阶张量投影到压缩核心张量中,对核心张量使用季节性差分自回归滑动平均算法实现对未来的预测。在4个公共数据集上验证了该算法与经典的XGBoost、VAR、SARIMA等算法相比具有更好的计算精度和更少的计算成本。 展开更多
关键词 多维金融时序预测 块Hankel张量 季节性差分自回归滑动平均算法 Tucker分解 多路延迟嵌入变换
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部