期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
度是事物保持其质的多维数量界限 被引量:1
1
作者 幸强国 《四川师范大学学报(社会科学版)》 北大核心 1990年第2期95-98,共4页
随着科学实践的发展,人类对量变质变规律的认识已经进到了一个新的高度。人们已经比较普遍地认识到:一般说来,制约客观事物的数量界限是多维的。一度两点理论是基于一维数量界线对量变质变规律和度的总结而形成的简单模型。要对事物的... 随着科学实践的发展,人类对量变质变规律的认识已经进到了一个新的高度。人们已经比较普遍地认识到:一般说来,制约客观事物的数量界限是多维的。一度两点理论是基于一维数量界线对量变质变规律和度的总结而形成的简单模型。要对事物的量变质变和度作更一般的总结,不可忽视度的多维性。笔者认为,度是事物保持其质的多维数量界限。无论从自然科学、社会科学发展的角度,还是从哲学自身发展的角度,都可以证明上述有关度的定义是有充分根据的。 十九世纪化学发展迅速,化学原子论、原子分子学说和元素周期学说。 展开更多
关键词 多维数 量变质变规律 多维变量 多维 量子体系 相变 社会现象 物质体系 化学反应 关节点
在线阅读 下载PDF
基于多维联系数的城市交通安全态势监控模型 被引量:10
2
作者 胡启洲 吴娟 《中国安全科学学报》 CAS CSCD 北大核心 2011年第10期16-22,共7页
为预防城市交通事故,提高城市交通安全管理水平,针对城市交通安全的现状和态势,根据交通信息在时间和空间上的分布特性,在分析城市交通安全特点的基础上,构建城市交通安全态势监控的指标体系,提出基于多维联系数的城市交通安全态势监控... 为预防城市交通事故,提高城市交通安全管理水平,针对城市交通安全的现状和态势,根据交通信息在时间和空间上的分布特性,在分析城市交通安全特点的基础上,构建城市交通安全态势监控的指标体系,提出基于多维联系数的城市交通安全态势监控模型。该模型在定义多维联系数的基础上,研究了多样联系数的运算关系,并在计算各个指标与绝对理想指标的相对隶属度基础上,得到了城市交通安全态势的综合监控值。根据综合监控值不但能够评估城市交通安全状况,而且能够对不同城市交通安全态势进行大小排序。 展开更多
关键词 城市交通 评估 动态监控 多维联系 等级界定
在线阅读 下载PDF
多维分形维数分析多发性硬化患者表现正常脑白质 被引量:3
3
作者 聂书君 童忠勇 +1 位作者 于春水 童隆正 《首都医科大学学报》 CAS 2007年第3期359-362,共4页
目的测试多发性硬化(MS)患者表现正常的脑白质(NAWM)与健康志愿者的正常脑白质(NWM)的纹理差异是否有统计学意义,并建立判别模型对两类脑白质(WM)进行分类。方法用估计分形维数的方法分析多发性硬化患者和健康志愿者MR的T2加权图像的感... 目的测试多发性硬化(MS)患者表现正常的脑白质(NAWM)与健康志愿者的正常脑白质(NWM)的纹理差异是否有统计学意义,并建立判别模型对两类脑白质(WM)进行分类。方法用估计分形维数的方法分析多发性硬化患者和健康志愿者MR的T2加权图像的感兴趣区(RO I),得到二维分形维数、三维表面分形维数和三维体积分形维数,依据这些特征参量用概率神经网络(PNN)对样本分类,然后与基于灰度共生矩阵和游程长纹理分析方法建立的模型进行对比。结果MS表现正常组和正常组WM的3个分形维数差异有统计学意义(P<0.05),MS表现正常组与正常组的识别率分别为77.5%和65%。结论在本批样本中,NAWM和正常WM的纹理差异有统计学意义,以上结论还需扩大样本量并采用多种方法进一步证实。 展开更多
关键词 多维分形 多发性硬化 表现正常脑白质
在线阅读 下载PDF
基于多维联系数的城轨交通车站安全态势理解模型研究 被引量:1
4
作者 李军 李海玉 +1 位作者 陈波 秦勇 《铁道标准设计》 北大核心 2014年第9期129-134,共6页
为提高城轨交通车站的安全性,提出一种基于多维联系数的安全态势理解模型以评估其安全状态。首先通过城轨交通车站安全影响因素分析,建立城轨交通车站安全态势评价指标体系,然后基于多维联系数建立城轨交通车站安全态势理解模型,最后以... 为提高城轨交通车站的安全性,提出一种基于多维联系数的安全态势理解模型以评估其安全状态。首先通过城轨交通车站安全影响因素分析,建立城轨交通车站安全态势评价指标体系,然后基于多维联系数建立城轨交通车站安全态势理解模型,最后以广州地铁某车站为例获取相关数据,对评价指标进行量化并进行验证。实验结果显示,该模型真实反映车站安全状况,能够为管理者提供决策依据。 展开更多
关键词 城轨交通 车站 安全态势理解模型 多维联系 评价指标体系
在线阅读 下载PDF
多维导数阶数控制的多步Taylor级数暂态稳定计算方法 被引量:4
5
作者 夏世威 徐英 +1 位作者 郭志忠 李庚银 《电力系统及其自动化学报》 CSCD 北大核心 2019年第3期107-112,共6页
为提高电力系统暂态稳定分析效率,本文提出了多维阶数控制的多步Taylor级数暂态稳定快速计算方法。该方法基于多步Taylor级数展开理论,针对不同时间常数的机组及不同积分时刻的机组转角状态量,根据时域仿真计算精度建立了转角状态量的... 为提高电力系统暂态稳定分析效率,本文提出了多维阶数控制的多步Taylor级数暂态稳定快速计算方法。该方法基于多步Taylor级数展开理论,针对不同时间常数的机组及不同积分时刻的机组转角状态量,根据时域仿真计算精度建立了转角状态量的高阶导数阶数差异化控制策略,并从理论上分析了忽略部分高阶导数对转角轨迹的影响。所提方法可实现状态变量时间和空间上的动态多维导数阶数控制,消除常规Taylor级数法暂态稳定分析的计算冗余。New England 10机39节点算例仿真验证了所提方法可灵活方便地实现Taylor级数法的时空多维阶数控制,能有效提高暂态稳定分析效率。 展开更多
关键词 电力系统 暂态稳定分析 TAYLOR级 高阶导 多维控制
在线阅读 下载PDF
一种基于多维区间数加权距离的多属性决策方法 被引量:2
6
作者 肖浩 覃正 《统计与决策》 CSSCI 北大核心 2011年第8期32-34,共3页
区间数是描述不确定性的一种数学方法,通常的不确定多属性决策方法基于一维区间数。文章借鉴向量之间距离概念,提出了一种基于多维区间数加权距离的多属性决策方法。首先在介绍一维区间数和相关运算的基础上给出了多维区间数概念及其相... 区间数是描述不确定性的一种数学方法,通常的不确定多属性决策方法基于一维区间数。文章借鉴向量之间距离概念,提出了一种基于多维区间数加权距离的多属性决策方法。首先在介绍一维区间数和相关运算的基础上给出了多维区间数概念及其相关运算,着重分析了多维区间数之间的距离与加权距离;然后由多维区间数加权距离概念得到了多维区间数的范数,类似于向量范数,提出了基于范数的多维区间数大小比较的新测度,研究了基于多维区间数加权距离的不确定性多属性决策排序方法;最后给出算例说明了提出方法的有效性。 展开更多
关键词 多维区间 多属性决策 加权距离 区间比较
在线阅读 下载PDF
一种基于多维区间数可能度的投资决策方法
7
作者 肖浩 覃正 《统计与决策》 CSSCI 北大核心 2011年第16期25-27,共3页
区间数是描述不确定性的一种数学方法。通常的不确定多属性决策方法基于一维区间数。基于多维区间数比较的可能度概念,文章提出了一种多维区间数排序的多属性投资决策方法。首先在介绍一维区间数和相关运算的基础上,分析了多维区间数概... 区间数是描述不确定性的一种数学方法。通常的不确定多属性决策方法基于一维区间数。基于多维区间数比较的可能度概念,文章提出了一种多维区间数排序的多属性投资决策方法。首先在介绍一维区间数和相关运算的基础上,分析了多维区间数概念及其相关运算,并给出多维区间数比较的可能度概念;然后类似于一维区间数比较的可能度方法,提出基于多维区间数可能度概念的多维区间数排序新方法,进一步研究了一种基于多维区间数可能度的不确定性投资决策排序方法,确定最优投资方案;最后给出一个算例说明了提出方法的有效性。 展开更多
关键词 多维区间 多属性决策 可能度 排序方法
在线阅读 下载PDF
基于两种GMM-UBM多维概率输出的SVM语音情感识别 被引量:2
8
作者 黄永明 章国宝 +1 位作者 董飞 达飞鹏 《计算机应用研究》 CSCD 北大核心 2011年第1期98-101,共4页
针对GMM应用于情感识别时区分能力较弱的缺点,提出了一种将GMM与SVM有效结合的算法:基于GMM-UBM多维概率输出的SVM语音情感识别方法。该方法将GMM-UBM模型对一条语音的情感特征参数的两种多维概率输出(与特征向量同维、与GMM阶数同维)作... 针对GMM应用于情感识别时区分能力较弱的缺点,提出了一种将GMM与SVM有效结合的算法:基于GMM-UBM多维概率输出的SVM语音情感识别方法。该方法将GMM-UBM模型对一条语音的情感特征参数的两种多维概率输出(与特征向量同维、与GMM阶数同维)作为SVM分类器的特征参数,既利用了GMM表征数据本身统计特性的能力,又保留了SVM判决能力强的特点。在柏林情感语音库与汉语情感语料库上进行的实验结果表明,该方法在语音情感识别上的平均识别率较标准GMM方法提高1.7%~3.7%。 展开更多
关键词 语音情感识别 特征向量同GMM—UBM多维概率输出 GMM阶GMM—UBM多维概率输出 支持向量机(SVM)
在线阅读 下载PDF
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion
9
作者 CHEN Shu-zong LIU Yun-xiao +3 位作者 WANG Yun-long QIAN Cheng HUA Chang-chun SUN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3329-3348,共20页
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode... Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration. 展开更多
关键词 rolling mill vibration multi-dimension data multi-modal data convolutional neural network time series prediction
在线阅读 下载PDF
Similarity measure design for high dimensional data 被引量:3
10
作者 LEE Sang-hyuk YAN Sun +1 位作者 JEONG Yoon-su SHIN Seung-soo 《Journal of Central South University》 SCIE EI CAS 2014年第9期3534-3540,共7页
Information analysis of high dimensional data was carried out through similarity measure application. High dimensional data were considered as the a typical structure. Additionally, overlapped and non-overlapped data ... Information analysis of high dimensional data was carried out through similarity measure application. High dimensional data were considered as the a typical structure. Additionally, overlapped and non-overlapped data were introduced, and similarity measure analysis was also illustrated and compared with conventional similarity measure. As a result, overlapped data comparison was possible to present similarity with conventional similarity measure. Non-overlapped data similarity analysis provided the clue to solve the similarity of high dimensional data. Considering high dimensional data analysis was designed with consideration of neighborhoods information. Conservative and strict solutions were proposed. Proposed similarity measure was applied to express financial fraud among multi dimensional datasets. In illustrative example, financial fraud similarity with respect to age, gender, qualification and job was presented. And with the proposed similarity measure, high dimensional personal data were calculated to evaluate how similar to the financial fraud. Calculation results show that the actual fraud has rather high similarity measure compared to the average, from minimal 0.0609 to maximal 0.1667. 展开更多
关键词 high dimensional data similarity measure DIFFERENCE neighborhood information financial fraud
在线阅读 下载PDF
Junk band recovery for hyperspectral image based on curvelet transform
11
作者 孙蕾 罗建书 《Journal of Central South University》 SCIE EI CAS 2011年第3期816-822,共7页
Under consideration that the profiles of bands at close wavelengths are quite similar and the curvelets are good at capturing profiles, a junk band recovery algorithm for hyperspectral data based on curvelet transform... Under consideration that the profiles of bands at close wavelengths are quite similar and the curvelets are good at capturing profiles, a junk band recovery algorithm for hyperspectral data based on curvelet transform is proposed. Both the noisy bands and the noise-free bands are transformed via curvelet band by band. The high frequency coefficients in junk bands are replaced with linear interpolation of the high frequency coefficients in noise-flee bands, and the low frequency coefficients remain the same to keep the main spectral characteristics from being distorted. Jutak bands then are recovered after the inverse curvelet transform. The performance of this method is tested on the hyperspectral data cube obtained by airborne visible/infrared imaging spectrometer (AVIRIS). The experimental results show that the proposed method is superior to the traditional denoising method BayesShrink and the art-of-state Curvelet Shrinkage in both roots of mean square error (RMSE) and peak-signal-to-noise ratio (PSNR) of recovered bands. 展开更多
关键词 hyperspectral image curvelet transform junk band denosing
在线阅读 下载PDF
Design of similarity measure for discrete data and application to multi-dimension 被引量:1
12
作者 LEE Myeong-ho 魏荷 +2 位作者 LEE Sang-hyuk LEE Sang-min SHIN Seung-soo 《Journal of Central South University》 SCIE EI CAS 2013年第4期982-987,共6页
Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and d... Similarity measure design for discrete data group was proposed. Similarity measure design for continuous membership function was also carried out. Proposed similarity measures were designed based on fuzzy number and distance measure, and were proved. To calculate the degree of similarity of discrete data, relative degree between data and total distribution was obtained. Discrete data similarity measure was completed with combination of mentioned relative degrees. Power interconnected system with multi characteristics was considered to apply discrete similarity measure. Naturally, similarity measure was extended to multi-dimensional similarity measure case, and applied to bus clustering problem. 展开更多
关键词 similarity measure MULTI-DIMENSION discrete data relative degree power interconnected system
在线阅读 下载PDF
Multi-label dimensionality reduction based on semi-supervised discriminant analysis
13
作者 李宏 李平 +1 位作者 郭跃健 吴敏 《Journal of Central South University》 SCIE EI CAS 2010年第6期1310-1319,共10页
Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimension... Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimensionality reduction via semi-supervised discriminant analysis(MSDA) was proposed.It was expected to derive an objective discriminant function as smooth as possible on the data manifold by multi-label learning and semi-supervised learning.By virtue of the latent imformation,which was provided by the graph weighted matrix of sample attributes and the similarity correlation matrix of partial sample labels,MSDA readily made the separability between different classes achieve maximization and estimated the intrinsic geometric structure in the lower manifold space by employing unlabeled data.Extensive experimental results on several real multi-label datasets show that after dimensionality reduction using MSDA,the average classification accuracy is about 9.71% higher than that of other algorithms,and several evaluation metrices like Hamming-loss are also superior to those of other dimensionality reduction methods. 展开更多
关键词 manifold learning semi-supervised learning (SSL) linear diseriminant analysis (LDA) multi-label classification dimensionality reduction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部