期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于双维信息与剪枝的中文猕猴桃文本命名实体识别方法
1
作者 齐梓均 牛当当 +3 位作者 吴华瑞 张礼麟 王仑峰 张宏鸣 《智慧农业(中英文)》 2025年第1期44-56,共13页
[目的/意义]中文猕猴桃文本在段落上下文主题与字符间的左右关系中,展现出垂直与水平双维度特性。若能充分利用中文猕猴桃文本的双维特性,将有助于进一步提升命名实体识别的识别效果。基于此,提出了一种基于双维信息与剪枝的命名实体识... [目的/意义]中文猕猴桃文本在段落上下文主题与字符间的左右关系中,展现出垂直与水平双维度特性。若能充分利用中文猕猴桃文本的双维特性,将有助于进一步提升命名实体识别的识别效果。基于此,提出了一种基于双维信息与剪枝的命名实体识别方法,命名为KIWI-Coord-Prune(kiwifruit-CoordKIWINER-PruneBiLSTM)。[方法]通过设计CoordKIWINER与PruneBi-LSTM两个模块,对中文猕猴桃文本中的双维信息进行精准处理。其中CoordKIWINER模块能够显著提升模型捕捉复杂和嵌套实体的能力,从而生成涵盖更多文本信息的加强字符矢量;PruneBi-LSTM模块在上一模块的基础上,加强了模型对重要特征的学习与识别能力,从而进一步提升了实体识别效果。[结果和讨论]在自建数据集KIWIPRO和四个公开数据集人民日报(People's Daily)、ClueNER、Boson,以及ResumeNER上进行试验,并与LSTM、Bi-LSTM、LR-CNN、Softlexicon-LSTM,以及KIWINER五个先进模型进行对比,本研究提出的方法在5个数据集上分别取得了较好的F1值,分别为89.55%、91.02%、83.50%、83.49%和95.81%。[结论]与现有方法相比,本研究提出的方法不仅能够有效提升中文猕猴桃领域文本的命名实体识别效果,且具有一定的泛化性,同时也能够为相关知识图谱和问答系统的构建等下游任务提供技术支持。 展开更多
关键词 中文命名实体识别 猕猴桃文本 自建数据集 多维度注意力机制 剪枝 深度学习 文本特征增强
在线阅读 下载PDF
面向社区问答匹配的混合神经网络模型 被引量:3
2
作者 张衍坤 陈羽中 刘漳辉 《小型微型计算机系统》 CSCD 北大核心 2020年第9期1833-1838,共6页
问答匹配是社区问答的一项重要且具有挑战性的任务.本文提出了一种面向社区问答匹配的混合神经网络模型.针对问答对序列,提出了融合卷积神经网络(CNN)与双向长短期记忆网络(Bi-LSTM)的混合模型,学习问答对的语义信息及问答对序列的上下... 问答匹配是社区问答的一项重要且具有挑战性的任务.本文提出了一种面向社区问答匹配的混合神经网络模型.针对问答对序列,提出了融合卷积神经网络(CNN)与双向长短期记忆网络(Bi-LSTM)的混合模型,学习问答对的语义信息及问答对序列的上下文相关性信息;针对用户的历史回答,提出基于多维度注意力机制的用户-问题建模方法,学习用户与问题之间的相关性信息.在SemEval-2015CQA数据集上的实验结果表明,与现有的社区问答匹配算法相比,本文算法能够有效提高社区问答匹配精度. 展开更多
关键词 社区问答 问答匹配 多维度注意力机制 用户建模
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部