期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于主振模态预测的带锯振动主动抑制系统 被引量:2
1
作者 倪敬 王宏亮 +1 位作者 刘湘琪 顾瞻华 《机电工程》 CAS 2014年第4期454-457,494,共5页
针对带锯条振动引起的材料损失、锯条寿命降低、锯材尺寸精度及加工面质量变差的状况,设计了一种基于主振模态预测的带锯条振动主动抑制装置。该装置实时采集带锯条横向、纵向及扭转方向上的多维度振动信号,并采用基于EMD筛分方法的主... 针对带锯条振动引起的材料损失、锯条寿命降低、锯材尺寸精度及加工面质量变差的状况,设计了一种基于主振模态预测的带锯条振动主动抑制装置。该装置实时采集带锯条横向、纵向及扭转方向上的多维度振动信号,并采用基于EMD筛分方法的主振型模态识别算法,来构建振动信号关于主振型模态的预测模型,最后基于实时采得的数据及其预测模型的输出量,通过PID控制方法控制电液阻尼减振器。实验结果表明,该装置对带锯条横向、纵向及扭转方向上的抑振效果分别可达80%、66%、75%。 展开更多
关键词 抑振 主振模态预测 多维度振动
在线阅读 下载PDF
Multi-dimension and multi-modal rolling mill vibration prediction model based on multi-level network fusion
2
作者 CHEN Shu-zong LIU Yun-xiao +3 位作者 WANG Yun-long QIAN Cheng HUA Chang-chun SUN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3329-3348,共20页
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode... Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration. 展开更多
关键词 rolling mill vibration multi-dimension data multi-modal data convolutional neural network time series prediction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部