文摘现有的基于双向长短时记忆(BiLSTM)网络的命名实体识别(NER)模型难以全面理解文本的整体语义以及捕捉复杂的实体关系。因此,提出一种基于全域信息融合和多维关系感知的NER模型。首先,通过BERT(Bidirectional Encoder Representations from Transformers)获取输入序列的向量表示,并结合BiLSTM进一步学习输入序列的上下文信息。其次,提出由梯度稳定层和特征融合模块组成的全域信息融合机制:前者使模型保持稳定的梯度传播并更新优化输入序列的表示,后者则融合BiLSTM的前后向表示获取更全面的特征表示。接着,构建多维关系感知结构学习不同子空间单词的关联性,以捕获文档中复杂的实体关系。此外,使用自适应焦点损失函数动态调整不同类别实体的权重,提高模型对少数类实体的识别性能。最后,在7个公开数据集上将所提模型和11个基线模型进行对比,实验结果表明所提模型的F1值均优于对比模型,可见该模型的综合性较优。