单细胞多组学测序正在广泛应用于生物医学研究中,并产生大量的多样性组学数据。然而原始的单细胞多组学数据包含多种类型的测序噪声和冗余信息,对后续生物医疗层面的分析造成困难。现有的降噪方法主要依赖于单一的数据分布假设,并针对...单细胞多组学测序正在广泛应用于生物医学研究中,并产生大量的多样性组学数据。然而原始的单细胞多组学数据包含多种类型的测序噪声和冗余信息,对后续生物医疗层面的分析造成困难。现有的降噪方法主要依赖于单一的数据分布假设,并针对性的处理单个组学数据,这对模型联合处理不同组学数据造成极大地限制。本研究提出一种使用单细胞多组学数据降噪的分析方法,称为scMAED(single-cell multi-omics data via a multi-head autoencoder network to denoising)。模型在多头自动编码器网络中添加了分类解码器,以无监督的方式来最大程度的去除数据噪声。首先,使用两个编码器独立学习多组学数据的内部特征,并联合输出的低维特征进行共同解码。其次,分类解码器不做任何数据分布假设,通过使用预测的细胞簇标签来反馈数据信息,以最大限度的去除复杂噪声。最后,使用主成分分析和t-SNE进行可视化。本文基于模拟数据集和真实的小鼠数据集对模型进行性能评估,结果显示sc-MAED在降噪效果上优于实验中的对比方法,并能够极大的改善单细胞多组学数据的质量。展开更多
基因与表型间的关联分析对揭示生物的内在遗传关联具有重要意义.随机游走算法可以融合多组学数据,聚合一阶或高阶邻居的标签信息,对网络中不同节点间关联信息进行补全,提高关联预测的准确度,进而发现基因和表型间潜在的遗传关联.但现有...基因与表型间的关联分析对揭示生物的内在遗传关联具有重要意义.随机游走算法可以融合多组学数据,聚合一阶或高阶邻居的标签信息,对网络中不同节点间关联信息进行补全,提高关联预测的准确度,进而发现基因和表型间潜在的遗传关联.但现有随机游走算法通常平等地对待每个节点,忽略了不同节点的重要性,使非重要节点过度传播,降低了模型性能.为此,本文提出了一种基于多组学数据融合的个性化随机游走算法(individual Multiple Random Walks,iMRW),在由基因、miRNA及表型节点构建的多组学异质网络上,基于网络拓扑结构,设计个性化多元随机游走策略,为不同重要程度的节点分配不同的游走步长,并结合高斯相互作用属性核相似性与随机游走,对网络不同节点及节点间关联信息进行补全,最终实现多源基因-表型关联矩阵的融合,准确获取基因-表型关联预测矩阵.在不同实验设置下,与主流算法的对比实验结果均显示iMRW能够取得更优的预测性能.在玉米光合作用能力和淀粉含量表型的实验分析结果也进一步证实了iMRW在识别潜在的基因-表型关联的实用性与有效性.展开更多
文摘单细胞多组学测序正在广泛应用于生物医学研究中,并产生大量的多样性组学数据。然而原始的单细胞多组学数据包含多种类型的测序噪声和冗余信息,对后续生物医疗层面的分析造成困难。现有的降噪方法主要依赖于单一的数据分布假设,并针对性的处理单个组学数据,这对模型联合处理不同组学数据造成极大地限制。本研究提出一种使用单细胞多组学数据降噪的分析方法,称为scMAED(single-cell multi-omics data via a multi-head autoencoder network to denoising)。模型在多头自动编码器网络中添加了分类解码器,以无监督的方式来最大程度的去除数据噪声。首先,使用两个编码器独立学习多组学数据的内部特征,并联合输出的低维特征进行共同解码。其次,分类解码器不做任何数据分布假设,通过使用预测的细胞簇标签来反馈数据信息,以最大限度的去除复杂噪声。最后,使用主成分分析和t-SNE进行可视化。本文基于模拟数据集和真实的小鼠数据集对模型进行性能评估,结果显示sc-MAED在降噪效果上优于实验中的对比方法,并能够极大的改善单细胞多组学数据的质量。
文摘基因与表型间的关联分析对揭示生物的内在遗传关联具有重要意义.随机游走算法可以融合多组学数据,聚合一阶或高阶邻居的标签信息,对网络中不同节点间关联信息进行补全,提高关联预测的准确度,进而发现基因和表型间潜在的遗传关联.但现有随机游走算法通常平等地对待每个节点,忽略了不同节点的重要性,使非重要节点过度传播,降低了模型性能.为此,本文提出了一种基于多组学数据融合的个性化随机游走算法(individual Multiple Random Walks,iMRW),在由基因、miRNA及表型节点构建的多组学异质网络上,基于网络拓扑结构,设计个性化多元随机游走策略,为不同重要程度的节点分配不同的游走步长,并结合高斯相互作用属性核相似性与随机游走,对网络不同节点及节点间关联信息进行补全,最终实现多源基因-表型关联矩阵的融合,准确获取基因-表型关联预测矩阵.在不同实验设置下,与主流算法的对比实验结果均显示iMRW能够取得更优的预测性能.在玉米光合作用能力和淀粉含量表型的实验分析结果也进一步证实了iMRW在识别潜在的基因-表型关联的实用性与有效性.