期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于ROS-QT的红花采摘机器人多线程传感器数据预处理系统
1
作者 郭辉 王翔 +1 位作者 武天伦 杨春天 《沈阳农业大学学报》 北大核心 2025年第1期117-127,共11页
[目的]针对红花采摘机器人在复杂农田环境中面临的实时感知与控制挑战,特别是多源异构传感器数据处理和对环境变化的快速响应问题,设计一种基于ROS和Qt的多线程并行控制系统。[方法]数据处理引入生产者-消费者模型,实现多源异构传感器... [目的]针对红花采摘机器人在复杂农田环境中面临的实时感知与控制挑战,特别是多源异构传感器数据处理和对环境变化的快速响应问题,设计一种基于ROS和Qt的多线程并行控制系统。[方法]数据处理引入生产者-消费者模型,实现多源异构传感器数据的实时并行处理,提高系统数据处理效率和鲁棒性,并在新疆吉木萨尔县红旗农场红花田现场试验。[结果]多线程架构在复杂场景中显著优化资源利用率,减少端到端延迟约19.3%~25%。通过任务分解与并行处理,多线程配置在高负载条件下将CPU使用率从单线程的90%降低至75%~80%,并显著平滑内存曲线,提升系统稳定性。[结论]该项目与新疆35家农户、合作社签订技术服务合作协议,对推动红花采摘机械化发展具有重要的理论和实践意义。 展开更多
关键词 红花采摘机器人 多线程控制系统 并行数据处理 并行控制
在线阅读 下载PDF
基于OpenMP的并行GA加速求解换热网络设计 被引量:4
2
作者 康丽霞 姜楠 +2 位作者 夏明星 唐亚哲 刘永忠 《高校化学工程学报》 EI CAS CSCD 北大核心 2016年第2期431-438,共8页
为了提高化工过程系统中大规模优化问题的求解效率,提出了一个基于OpenMP系统的并行遗传算法。该算法实现了CPU主线程和GPU线程的同步并行化,达到了加速求解优化问题的目的。该算法在基本遗传算法的基础上引入了一系列调节和控制策略,... 为了提高化工过程系统中大规模优化问题的求解效率,提出了一个基于OpenMP系统的并行遗传算法。该算法实现了CPU主线程和GPU线程的同步并行化,达到了加速求解优化问题的目的。该算法在基本遗传算法的基础上引入了一系列调节和控制策略,用于改善算法的收敛性,提高算法获得最优解的概率。通过对算法中各项操作的并行性分析,设计了CPU-GPU异构系统下的并行遗传算法,并最终在OpenMP系统下得以实现。以2个不同规模的换热网络优化问题为例,验证算法的准确性和有效性。优化结果表明:基于OpenMP的并行遗传算法不但可以得到比文献中更优的换热网络设计方案,而且与串行的遗传算法相比具有明显的加速效果。而且加速比随着换热网络优化问题规模的增大而增大这一特征将有利于化工过程系统中各类优化问题的快速准确求解。 展开更多
关键词 遗传算法 图像处理单元 共享内存多线程系统 换热网络
在线阅读 下载PDF
低功耗编译的若干相关技术
3
作者 连瑞琦 张兆庆 《计算机科学》 CSCD 北大核心 2004年第8期164-167,共4页
本文综述低功耗编译相关技术。首先简要介绍了若干低功耗领域的基本术语之后,总结出了可用于降低功耗的三类编译手段:选取有助于降低功耗的传统优化,考虑功耗因素改造现有优化技术和通过编译制导配合硬件降低功耗。其次简单介绍了多线... 本文综述低功耗编译相关技术。首先简要介绍了若干低功耗领域的基本术语之后,总结出了可用于降低功耗的三类编译手段:选取有助于降低功耗的传统优化,考虑功耗因素改造现有优化技术和通过编译制导配合硬件降低功耗。其次简单介绍了多线程系统和功耗模型的相关研究,最后,文章给出了低功耗编译领域研究的若干有潜力的方面,供有志进行这方面研究的研究人员参考。 展开更多
关键词 低功耗 多线程系统 微处理器 能量 功率 编译优化
在线阅读 下载PDF
Using multi-threads to hide deduplication I/O latency with low synchronization overhead 被引量:1
4
作者 朱锐 秦磊华 +1 位作者 周敬利 郑寰 《Journal of Central South University》 SCIE EI CAS 2013年第6期1582-1591,共10页
Data deduplication, as a compression method, has been widely used in most backup systems to improve bandwidth and space efficiency. As data exploded to be backed up, two main challenges in data deduplication are the C... Data deduplication, as a compression method, has been widely used in most backup systems to improve bandwidth and space efficiency. As data exploded to be backed up, two main challenges in data deduplication are the CPU-intensive chunking and hashing works and the I/0 intensive disk-index access latency. However, CPU-intensive works have been vastly parallelized and speeded up by multi-core and many-core processors; the I/0 latency is likely becoming the bottleneck in data deduplication. To alleviate the challenge of I/0 latency in multi-core systems, multi-threaded deduplication (Multi-Dedup) architecture was proposed. The main idea of Multi-Dedup was using parallel deduplication threads to hide the I/0 latency. A prefix based concurrent index was designed to maintain the internal consistency of the deduplication index with low synchronization overhead. On the other hand, a collisionless cache array was also designed to preserve locality and similarity within the parallel threads. In various real-world datasets experiments, Multi-Dedup achieves 3-5 times performance improvements incorporating with locality-based ChunkStash and local-similarity based SiLo methods. In addition, Multi-Dedup has dramatically decreased the synchronization overhead and achieves 1.5-2 times performance improvements comparing to traditional lock-based synchronization methods. 展开更多
关键词 MULTI-THREAD MULTI-CORE parallel data deduplication
在线阅读 下载PDF
Adaptive predictive functional control based on Takagi-Sugeno model and its application to pH process 被引量:5
5
作者 苏成利 李平 《Journal of Central South University》 SCIE EI CAS 2010年第2期363-371,共9页
In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive fun... In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC. 展开更多
关键词 Takagi-Sugeno (T-S) model adaptive fuzzy predictive functional control (AFPFC) weighted recursive least square (WRLS) pH process
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部