为了处理张量数据,传统的学习算法常常把张量展成向量,但会造成破坏原始数据固有的高阶结构和内在相关性,导致信息丢失,或产生高维向量,使得后期学习过程中容易出现过拟合、维度灾难和小样本问题.近年提出了许多基于张量模式的分类算法...为了处理张量数据,传统的学习算法常常把张量展成向量,但会造成破坏原始数据固有的高阶结构和内在相关性,导致信息丢失,或产生高维向量,使得后期学习过程中容易出现过拟合、维度灾难和小样本问题.近年提出了许多基于张量模式的分类算法,而支持高阶张量机算法是张量分类算法中最有效的方法之一.考虑到张量的高维性和高冗余性,本文提出基于多线性主成分分析的支持高阶张量机分类算法(Multilinear Principle Component Analysis Based Support High-Order Tensor Machine,MPCA+SHTM).该算法首先利用多线性主成分分析对张量进行降维,然后利用支持高阶张量机对降维后的张量进行学习.在12个张量数据集上的实验表明:MPCA+SHTM在保持测试精度的情况下有效地降低了SHTM的计算时间.展开更多
A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support ...A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support vector regression(SVR) based on wavelet transform(WT) and principal component analysis(PCA) was used. Experimental data from the HDS setup were employed to validate the proposed model. The results reveal that the integrated WT-PCA with SVR model was able to increase the prediction accuracy of SVR model. Implementation of the proposed model delivers the best satisfactory predicting performance(EAARE=0.058 and R2=0.97) in comparison with SVR. The obtained results indicate that the proposed model is more reliable and more precise than the multiple linear regression(MLR), SVR and PCA-SVR.展开更多
A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,wher...A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method.展开更多
为充分利用多时相极化合成孔径雷达(SAR)数据的时间相干性和散射特征,提出一个多时相极化SAR分类方法,该方法基于完整的极化协方差矩阵,能够在张量空间保持协方差矩阵的复数矩阵结构,实现时间维度的独立表示,可同时适用于全极化和简缩极...为充分利用多时相极化合成孔径雷达(SAR)数据的时间相干性和散射特征,提出一个多时相极化SAR分类方法,该方法基于完整的极化协方差矩阵,能够在张量空间保持协方差矩阵的复数矩阵结构,实现时间维度的独立表示,可同时适用于全极化和简缩极化SAR。该方法采用目标级的分类策略,首先,通过简单线性迭代聚类方法实现多时相极化SAR的超像素联合分割;随后,将目标的极化协方差矩阵表示为张量的形式,利用张量域的多线性主成分分析方法,实现多时相极化协方差矩阵的特征降维;最后,用决策树方法实现农作物分类。获取4景RADARSAT-2 Fine Quad模式全极化SAR图像,对天津市武清区农作物种植区开展作物分类实验,相较于其他文献提出的方法,本文方法取得了最高的总体分类精度。进一步,将该方法推广至π/4模式和CTLR模式的简缩极化SAR,并将其农作物分类精度与全极化SAR进行对比,以研究不同极化SAR数据对作物的识别能力。实验结果表明,简缩极化SAR可以取得与全极化SAR相当的总体分类精度,但全极化SAR在水稻、荷花等小样本地物上表现更优。展开更多
文摘为了处理张量数据,传统的学习算法常常把张量展成向量,但会造成破坏原始数据固有的高阶结构和内在相关性,导致信息丢失,或产生高维向量,使得后期学习过程中容易出现过拟合、维度灾难和小样本问题.近年提出了许多基于张量模式的分类算法,而支持高阶张量机算法是张量分类算法中最有效的方法之一.考虑到张量的高维性和高冗余性,本文提出基于多线性主成分分析的支持高阶张量机分类算法(Multilinear Principle Component Analysis Based Support High-Order Tensor Machine,MPCA+SHTM).该算法首先利用多线性主成分分析对张量进行降维,然后利用支持高阶张量机对降维后的张量进行学习.在12个张量数据集上的实验表明:MPCA+SHTM在保持测试精度的情况下有效地降低了SHTM的计算时间.
文摘A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support vector regression(SVR) based on wavelet transform(WT) and principal component analysis(PCA) was used. Experimental data from the HDS setup were employed to validate the proposed model. The results reveal that the integrated WT-PCA with SVR model was able to increase the prediction accuracy of SVR model. Implementation of the proposed model delivers the best satisfactory predicting performance(EAARE=0.058 and R2=0.97) in comparison with SVR. The obtained results indicate that the proposed model is more reliable and more precise than the multiple linear regression(MLR), SVR and PCA-SVR.
基金Projects(61273163,61325015,61304121)supported by the National Natural Science Foundation of China
文摘A new modeling and monitoring approach for multi-mode processes is proposed.The method of similarity measure(SM) and kernel principal component analysis(KPCA) are integrated to construct SM-KPCA monitoring scheme,where SM method serves as the separation of common subspace and specific subspace.Compared with the traditional methods,the main contributions of this work are:1) SM consisted of two measures of distance and angle to accommodate process characters.The different monitoring effect involves putting on the different weight,which would simplify the monitoring model structure and enhance its reliability and robustness.2) The proposed method can be used to find faults by the common space and judge which mode the fault belongs to by the specific subspace.Results of algorithm analysis and fault detection experiments indicate the validity and practicability of the presented method.
文摘为充分利用多时相极化合成孔径雷达(SAR)数据的时间相干性和散射特征,提出一个多时相极化SAR分类方法,该方法基于完整的极化协方差矩阵,能够在张量空间保持协方差矩阵的复数矩阵结构,实现时间维度的独立表示,可同时适用于全极化和简缩极化SAR。该方法采用目标级的分类策略,首先,通过简单线性迭代聚类方法实现多时相极化SAR的超像素联合分割;随后,将目标的极化协方差矩阵表示为张量的形式,利用张量域的多线性主成分分析方法,实现多时相极化协方差矩阵的特征降维;最后,用决策树方法实现农作物分类。获取4景RADARSAT-2 Fine Quad模式全极化SAR图像,对天津市武清区农作物种植区开展作物分类实验,相较于其他文献提出的方法,本文方法取得了最高的总体分类精度。进一步,将该方法推广至π/4模式和CTLR模式的简缩极化SAR,并将其农作物分类精度与全极化SAR进行对比,以研究不同极化SAR数据对作物的识别能力。实验结果表明,简缩极化SAR可以取得与全极化SAR相当的总体分类精度,但全极化SAR在水稻、荷花等小样本地物上表现更优。