-
题名基于多级跳跃残差组的运动人像去模糊网络
- 1
-
-
作者
纪佳奇
卢振坤
熊福棚
张甜
杨豪
-
机构
广西民族大学电子信息学院
-
出处
《计算机应用》
CSCD
北大核心
2023年第10期3244-3250,共7页
-
基金
国家自然科学基金资助项目(61561008)
广西自然科学基金资助项目(2018GXNSFAA294019)。
-
文摘
为解决复原后的运动模糊人像图像的轮廓模糊、细节丢失等问题,提出了基于多级跳跃残差组生成对抗网络(GAN)的运动人像去模糊方法。首先,改进残差块以构造多级跳跃残差组模块,并改进PatchGAN的结构以使GAN能够更好地结合各层的图像特征;其次,使用多损失融合的方法优化网络,从而增强重建后图像的真实纹理;最后,采用端到端的模式将运动模糊的人像图像进行盲去模糊操作,并输出清晰的人像图像。在CelebA数据集上的实验结果表明,相较于DeblurGAN(Deblur GAN)、尺度循环网络(SRN)和MSRAN(Multi-Scale Recurrent Attention Network)等基于卷积神经网络(CNN)的方法,所提方法的峰值信噪比(PSNR)和结构相似度(SSIM)分别至少提高了0.46 dB和0.05;同时,所提方法的模型参数更少,修复速度更快,且复原后的人像图像具有更多的纹理细节。
-
关键词
图像去模糊
盲去模糊
生成对抗网络
多级跳跃残差组
多损失融合
-
Keywords
image debluring
blind deblurring
Generative Adversarial Network(GAN)
multi-level jump residual group
multi-loss fusion
-
分类号
TP391.41
[自动化与计算机技术—计算机应用技术]
-