期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
鲁棒多视角潜在低秩表示的图像分类方法
1
作者 申燕萍 韩少勇 +1 位作者 顾苏杭 郇战 《石河子大学学报(自然科学版)》 CAS 北大核心 2024年第5期652-660,共9页
随着5G和网络技术的飞速发展,大量互联网图像出现在人们的视野中。互联网图像的高维和噪声特性是图像分类问题的主要挑战。为提高互联网图像的识别性和鲁棒性,本文提出了一种鲁棒多视角潜在低秩表示(robust multi-view latent low rank ... 随着5G和网络技术的飞速发展,大量互联网图像出现在人们的视野中。互联网图像的高维和噪声特性是图像分类问题的主要挑战。为提高互联网图像的识别性和鲁棒性,本文提出了一种鲁棒多视角潜在低秩表示(robust multi-view latent low rank representation,RMLLRR)的图像分类方法。RMLLRR算法在低秩表示算法的框架上引入多视角学习的思想,根据视角互补性和一致性准则,利用多种特征得到图像全面的描述信息,最大化不同视角间的一致性和最小化视角间信息描述的分歧。RMLLRR算法使用潜在低秩表示的思想,过滤冗余特征和噪声信息,着重考虑图像主要特征信息和显著特征信息,使得模型更加鲁棒和分辨力。此外,RMLLRR算法运用ε-draggings技术学习类间大间隔的松弛标签矩阵,起到增强类别判别的作用。人脸数据集ORL、物体数据集COIL和对象识别数据集GRAZ的实验结果表明,在噪声环境下,RMLLRR算法在所有对比算法中取得了最好的分类结果,分类精度分别达到92.43%、98.95%和63.37%。 展开更多
关键词 多视角学习 潜在表示 ε-draggings技术 图像分类
在线阅读 下载PDF
基于潜在低秩表示与复合滤波的红外与弱可见光增强图像融合方法 被引量:23
2
作者 江泽涛 蒋琦 +1 位作者 黄永松 张少钦 《光子学报》 EI CAS CSCD 北大核心 2020年第4期157-168,共12页
针对传统红外与弱可见光图像融合算法中存在的亮度与对比度低、细节轮廓信息缺失、可视性差等问题,提出一种基于潜在低秩表示与复合滤波的红外与弱可见光增强图像融合方法.该方法首先利用改进的高动态范围压缩增强方法增强可见光图像提... 针对传统红外与弱可见光图像融合算法中存在的亮度与对比度低、细节轮廓信息缺失、可视性差等问题,提出一种基于潜在低秩表示与复合滤波的红外与弱可见光增强图像融合方法.该方法首先利用改进的高动态范围压缩增强方法增强可见光图像提高亮度;然后利用基于潜在低秩表示与复合滤波的分解方法分别对红外与增强后的弱可见光图像进行分解,得到相应的低频和高频层;再分别使用改进的对比度增强视觉显著图融合方法与改进的加权最小二乘优化融合方法对得到的低频和高频层进行融合;最后将得到的低频和高频融合层进行线性叠加得到最终的融合图像.与其他方法的对比实验结果表明,用该方法得到的融合图像细节信息丰富,清晰度高,具有良好的可视性. 展开更多
关键词 图像处理 图像融合 潜在表示 复合滤波 视觉显著图
在线阅读 下载PDF
基于低秩稀疏分解与协作表示的图像分类算法 被引量:2
3
作者 张旭 蒋建国 +1 位作者 洪日昌 杜跃 《计算机科学》 CSCD 北大核心 2016年第7期83-88,共6页
目前,大部分图像分类算法为了获取较高的性能均需要充分的训练学习过程,然而在实际应用中,往往存在训练样本不足及过拟合等问题。为了避免上述问题出现,在朴素贝叶斯最近邻分类算法的原理框架下,基于非负稀疏编码、低秩稀疏分解以及协... 目前,大部分图像分类算法为了获取较高的性能均需要充分的训练学习过程,然而在实际应用中,往往存在训练样本不足及过拟合等问题。为了避免上述问题出现,在朴素贝叶斯最近邻分类算法的原理框架下,基于非负稀疏编码、低秩稀疏分解以及协作表示提出一种非参数学习的图像分类算法。首先,基于非负稀疏编码和最大值汇聚操作表示图像信息,并构建具有低秩性质的同类训练图像集的局部特征矩阵;其次,采用低秩稀疏分解结合别类标签信息构建两类视觉词典以充分利用同类图像的相关性和差异性;最后基于协作表示表征测试图像并进行分类决策,实验结果验证了所提算法的有效性。 展开更多
关键词 图像分类 视觉词袋 稀疏编码 稀疏分解 协作表示
在线阅读 下载PDF
基于张量分解的鲁棒核低秩表示算法 被引量:2
4
作者 熊李艳 何雄 +1 位作者 黄晓辉 黄卫春 《科学技术与工程》 北大核心 2018年第21期56-62,共7页
低秩表示算法,如低秩表示(low-rank representation,LRR)、鲁棒核低秩表示(robust kernel low-rank representation,RKLRR),在处理高维数据方面展现了广阔的应用前景;然而这些方法并不适合高阶数据,传统的低秩表示算法通常只对数据的某... 低秩表示算法,如低秩表示(low-rank representation,LRR)、鲁棒核低秩表示(robust kernel low-rank representation,RKLRR),在处理高维数据方面展现了广阔的应用前景;然而这些方法并不适合高阶数据,传统的低秩表示算法通常只对数据的某一特征属性进行降维。提出了基于张量分解的鲁棒核低秩表示算法(kernel low-rank representation by robust tensor decomposition,RTDKLRR);该算法能够处理高阶非线性的张量数据,对噪声更加鲁棒。首先对RTDKLRR算法设计目标函数并给出约束条件;其次,设计迭代规则对目标函数进行优化。在合成数据集和真实数据集上的实验结果表明优于同类算法。 展开更多
关键词 表示 高阶数据 张量分解 核函数
在线阅读 下载PDF
基于低秩表示的非负张量分解算法
5
作者 刘亚楠 刘路路 罗斌 《计算机应用研究》 CSCD 北大核心 2016年第1期300-303,共4页
为了提高图像分类准确率,提出了一种基于低秩表示的非负张量分解算法。作为压缩感知理论的推广和发展,低秩表示将矩阵的秩作为一种稀疏测度,由于矩阵的秩反映了矩阵的固有特性,所以低秩表示能有效地分析和处理矩阵数据,把低秩表示引入... 为了提高图像分类准确率,提出了一种基于低秩表示的非负张量分解算法。作为压缩感知理论的推广和发展,低秩表示将矩阵的秩作为一种稀疏测度,由于矩阵的秩反映了矩阵的固有特性,所以低秩表示能有效地分析和处理矩阵数据,把低秩表示引入到张量模型中,即引入到非负张量分解算法中,进一步扩展非负张量分解算法。实验结果表明,所提算法与其他相关算法相比,分类结果较好。 展开更多
关键词 图像分类 表示 非负 张量分解
在线阅读 下载PDF
张量低秩表示和时空稀疏分解的视频前景检测 被引量:5
6
作者 隋中山 李俊山 +2 位作者 张姣 樊少云 孙胜永 《光学精密工程》 EI CAS CSCD 北大核心 2017年第2期529-536,共8页
针对视频中前景检测的问题,提出了一种基于张量低秩表示(Tensor Low-Rank Representation,TLRR)和时空稀疏分解的检测方法。由于视频序列中的前景除具有稀疏性外,本身还具有空间上的连续性以及时间上的持续性,本文提出采用时空稀疏范数... 针对视频中前景检测的问题,提出了一种基于张量低秩表示(Tensor Low-Rank Representation,TLRR)和时空稀疏分解的检测方法。由于视频序列中的前景除具有稀疏性外,本身还具有空间上的连续性以及时间上的持续性,本文提出采用时空稀疏范数对前景特性进行深入发掘。利用张量低秩表示方法将原始视频用张量形式进行分解,充分利用了原始数据的行信息和列信息,且将原始的背景、前景二分解泛化为背景、前景和噪声的三分解,使用非精确增广拉格朗日乘子(Inexact Augmented Lagrange Multiplier,IALM)方法进行最优化求解,并对算法进行了分析。设计实验对本文新方法的有效性进行了验证和比较,并对影响算法效果的重要参数ρ进行了进一步研究实验。实验结果表明:该方法能够有效检测出视频中的运动前景,其准确性相对已有方法有一定提高。 展开更多
关键词 视频 前景检测 时空稀疏分解 张量表示 非精确增广拉格朗日乘子
在线阅读 下载PDF
基于张量低秩分解和稀疏表示的红外微小气体泄漏检测 被引量:5
7
作者 隋中山 李俊山 +1 位作者 张姣 隋晓斐 《光学精密工程》 EI CAS CSCD 北大核心 2016年第11期2855-2862,共8页
为了检测石化工业生产过程中微小气体的泄漏,提出了一种应用红外成像技术的单帧红外小目标检测方法。研究了低秩稀疏分解理论和稀疏表示理论,并提出了一种新的基于张量低秩分解和稀疏表示的小目标检测方法。该方法基于张量分解的形式充... 为了检测石化工业生产过程中微小气体的泄漏,提出了一种应用红外成像技术的单帧红外小目标检测方法。研究了低秩稀疏分解理论和稀疏表示理论,并提出了一种新的基于张量低秩分解和稀疏表示的小目标检测方法。该方法基于张量分解的形式充分发掘背景矩阵所包含的信息;利用先验知识构造微小气体泄漏的目标字典;同时利用背景的低秩约束和小目标的稀疏表示约束分解出微小气体的泄漏目标。最后基于非精确增广拉格朗日乘子法(IALM),对本文算法进行最优化求解,并通过实验分析比较了本文方法和已有方法的优缺点。结果表明:本文方法的检测效果优于其他已有方法,并且具有较好的ROC(受试者工作特征)曲线,可以满足工业生产中对微小气体泄漏检测的要求。 展开更多
关键词 计算机视觉 红外检测 泄漏检测 张量分解 稀疏表示 红外成像
在线阅读 下载PDF
潜在低秩表示下的双判别器生成对抗网络的图像融合 被引量:2
8
作者 袁代玉 袁丽华 +1 位作者 习腾彦 李喆 《光学精密工程》 EI CAS CSCD 北大核心 2023年第7期1085-1095,共11页
为了改善红外与可见光图像融合的视觉效果,通过潜在低秩表示将两种不同源的图像分别分解为各自的低秩分量和去除噪声的稀疏分量,采用KL变换确定权重对稀疏分量进行加权融合得到融合稀疏图。再对双判别器的生成对抗网络重设计,借助VGG16... 为了改善红外与可见光图像融合的视觉效果,通过潜在低秩表示将两种不同源的图像分别分解为各自的低秩分量和去除噪声的稀疏分量,采用KL变换确定权重对稀疏分量进行加权融合得到融合稀疏图。再对双判别器的生成对抗网络重设计,借助VGG16网络提取两种源的低秩分量特征作为该网络的输入,通过生成器和判别器的博弈来生成融合低秩图。最后,将融合稀疏图与融合低秩图进行叠加获得最终的融合结果。实验结果表明,在TNO数据集上,与所列的5种先进方法相比,本文所提出的方法在熵、标准差、互信息、差异相关性总和及多尺度结构相似度5种指标上均获得最优结果,相比于次优值,5种指标分别提高了2.43%,4.68%,2.29%,2.24%,1.74%。在RoadScene数据集上只在差异相关性总和及多尺度结构相似度两种指标上取得最优,另外3种指标仅次于GTF(gradient transfer and total variation minimization)方法,但图像视觉效果明显优于GTF方法。综合主观评价和客观评价分析,本文所提方法确实能获得高质量的融合图像,与多种方法相比具有明显的优势。 展开更多
关键词 红外图像 可见光图像 潜在表示 改进双判别器生成对抗网络 图像评价
在线阅读 下载PDF
非控场景下主成分稀疏表示与低秩分解的人脸识别 被引量:12
9
作者 陈斌 东一舟 朱晋宁 《液晶与显示》 CAS CSCD 北大核心 2019年第8期816-824,共9页
针对非受控场景下人脸识别率低的问题,提出一种非控场景下基于主成分稀疏表示与低秩分解的人脸识别算法。首先通过核心基础信息平台收集的数据自构建基础人脸库,然后采集课堂照片并对采样照片通过主成分稀疏表示和低秩分解算法进行分割... 针对非受控场景下人脸识别率低的问题,提出一种非控场景下基于主成分稀疏表示与低秩分解的人脸识别算法。首先通过核心基础信息平台收集的数据自构建基础人脸库,然后采集课堂照片并对采样照片通过主成分稀疏表示和低秩分解算法进行分割,最后以基础人脸库为样本进行匹配识别,并将未进行低秩分解的情况与低秩分解后的结果进行比较。实验结果表明,在非受控场景下通过主成分稀疏表示叠加低秩分解的识别效果对光照变化影响的鲁棒性较强,对遮挡情况受到的影响相对明显,总体识别正确率最高达到92.4%,达到较好非控场景下人脸识别效果。该算法对开放型非受控场景下的人脸识别及由此衍生出的表情识别、行为识别等研究都有积极助益。 展开更多
关键词 非控场景 主成分 稀疏表示 分解 人脸识别
在线阅读 下载PDF
基于潜在低秩表示的红外和可见光图像融合 被引量:11
10
作者 孙彬 诸葛吴为 +1 位作者 高云翔 王梓萱 《红外技术》 CSCD 北大核心 2022年第8期853-862,共10页
红外和可见光图像融合广泛应用于目标跟踪、检测和识别等领域。为了保留细节的同时增强对比度,本文提出一种基于潜在低秩表示的红外和可见光图像融合方法。潜在低秩分解将源图像分解为基层和显著层,其中基层包含主要内容和结构信息,显... 红外和可见光图像融合广泛应用于目标跟踪、检测和识别等领域。为了保留细节的同时增强对比度,本文提出一种基于潜在低秩表示的红外和可见光图像融合方法。潜在低秩分解将源图像分解为基层和显著层,其中基层包含主要内容和结构信息,显著层包含能量相对集中的局部区域。进一步利用比例金字塔分解得到低频和高频的基层子带,并针对不同层的特点设计对应的融合规则。利用稀疏表示表达低频基层较分散的能量,设计L1范数最大和稀疏系数最大规则,加权平均融合策略保留不同的显著特征;绝对值最大增强高频基层的对比度信息;而显著层则利用局部方差度量局部显著性,加权平均方式突出对比度较强的目标区域。在TNO数据集上的定性和定量实验分析表明方法具有良好的融合性能。基于低秩分解的方法能够增强红外和可见光融合图像中目标对比度的同时保留了丰富的细节信息。 展开更多
关键词 潜在表示 显著性分解 稀疏表示 图像融合
在线阅读 下载PDF
潜在低秩表示框架下基于卷积神经网络结合引导滤波的红外与可见光图像融合 被引量:7
11
作者 娄熙承 冯鑫 《光子学报》 EI CAS CSCD 北大核心 2021年第3期180-193,共14页
为提高融合图像的可视性,解决传统红外与可见光图像融合算法中存在的边缘特征缺失、细节模糊的问题,提出了一种潜在低秩表示框架下基于卷积神经网络结合引导滤波的红外与可见光图像融合算法。该算法首先利用潜在低秩表示对源图像进行分... 为提高融合图像的可视性,解决传统红外与可见光图像融合算法中存在的边缘特征缺失、细节模糊的问题,提出了一种潜在低秩表示框架下基于卷积神经网络结合引导滤波的红外与可见光图像融合算法。该算法首先利用潜在低秩表示对源图像进行分解,得到源图像的低秩分量和显著分量。其次,利用卷积神经网络根据源图像的特征信息,得到权值图。再次,通过引导滤波算法对权值图进行边缘锐化,然后再将优化后的权值图分别与源图像的低秩分量和显著分量融合,得到融合图像的低秩分量和显著分量。最后,将融合图像的低秩分量和显著分量叠加,得到最终的融合图像。实验结果表明,该算法在主观评价和客观指标上均优于传统的红外与可见光图像融合算法。 展开更多
关键词 红外与可见光图像 图像融合 潜在表示 卷积神经网络 引导滤波
在线阅读 下载PDF
基于潜在低秩表示的多聚焦图像融合方法 被引量:2
12
作者 徐慧娴 田洋川 +1 位作者 陈明举 熊兴中 《传感器与微系统》 CSCD 北大核心 2023年第5期156-160,共5页
低秩表示(LRR)侧重于图像主要特征表示,在实现多焦距图像融合中容易造成细节信息模糊。鉴于此,本文在LRR的基础上对细节信息进一步分解,提出了一种基于潜在LRR(LatLRR)的多聚焦图像融合方法。该方法首先通过预先训练产生一个潜在低秩字... 低秩表示(LRR)侧重于图像主要特征表示,在实现多焦距图像融合中容易造成细节信息模糊。鉴于此,本文在LRR的基础上对细节信息进一步分解,提出了一种基于潜在LRR(LatLRR)的多聚焦图像融合方法。该方法首先通过预先训练产生一个潜在低秩字典矩阵,以用于后续细节信息的分解并减少运算量。采用滑动窗口将待融合图像分割成多个图像块并构建成一个源矩阵,采用LatLRR对源矩阵进行分解得到低秩部分和细节部分。最后,对低秩部分和细节部分分别采用加权平均与核函数的奇异值分解策略进行融合。对比实验结果表明:在主客观评价中,本文提出的LatLRR的多聚焦图像融合方法获得更好的性能,更好的多焦距图像融合性能。 展开更多
关键词 潜在表示 多聚焦图像 核范数 字典
在线阅读 下载PDF
基于低秩三分解的红外图像杂波抑制 被引量:11
13
作者 何玉杰 李敏 +1 位作者 张金利 姚俊萍 《光学精密工程》 EI CAS CSCD 北大核心 2015年第7期2069-2078,共10页
针对红外图像中对比度较低、目标信号较弱且受背景噪声杂波干扰较大的特点,结合信号的稀疏表示理论提出了一种基于低秩三分解模型的红外图像背景杂波抑制算法。首先,分别对红外图像中目标、背景和噪声3种成份进行建模描述,得到低秩三分... 针对红外图像中对比度较低、目标信号较弱且受背景噪声杂波干扰较大的特点,结合信号的稀疏表示理论提出了一种基于低秩三分解模型的红外图像背景杂波抑制算法。首先,分别对红外图像中目标、背景和噪声3种成份进行建模描述,得到低秩三分解模型。然后,采用二维高斯模型构造红外小目标超完备字典,利用所提出的低秩三分解模型将分块重置的图像数据矩阵分解为背景、噪声和目标3种成份。最后,对于目标分量进行阈值处理从而得到突出红外小目标的重构图像,实现杂波抑制。在3种不同情况下的实验结果表明:本文算法能够使红外图像局部信噪比提高2倍以上;与其他经典算法相比,抑制因子至少提高15%。得到的结果表明,所提算法能够有效抑制杂波,在提高红外图像信噪比的同时,对不同噪声干扰也具有较强的鲁棒性。 展开更多
关键词 红外图像 杂波抑制 分解 稀疏表示
在线阅读 下载PDF
低秩矩阵和结构化稀疏分解的视频背景差分方法 被引量:3
14
作者 刘鑫 张钊强 +2 位作者 姚佳文 郭莉莉 齐春 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第6期23-29,共7页
针对基于矩阵分解的视频前景检测传统算法中忽视前景元素之间相关性会导致检测结果容易受噪声干扰和运动目标检测不完整等问题,提出了一个低秩矩阵和结构化稀疏分解的视频背景差分算法。该算法充分考虑到视频前景区域的结构化分布特征,... 针对基于矩阵分解的视频前景检测传统算法中忽视前景元素之间相关性会导致检测结果容易受噪声干扰和运动目标检测不完整等问题,提出了一个低秩矩阵和结构化稀疏分解的视频背景差分算法。该算法充分考虑到视频前景区域的结构化分布特征,利用结构化稀疏范数对前景进行约束;针对矩阵分解方法中参数选择的难题,采用了一种基于运动显著性判定的两步法来实现动态背景去除和正则化参数的自适应选择,即第一步利用低秩和结构化稀疏分解获得运动候选块,第二步对运动候选块进行显著性分析并利用自适应正则化参数的块稀疏分解进行前景检测。实验结果表明:与现有的基于矩阵分解的前景检测方法相比,该算法能够更加适应复杂多变的视频环境,在I2R测试库中检测出的前景有较高的精确度和召回率。 展开更多
关键词 前景检测 背景差分 矩阵分解 表示 结构化稀疏
在线阅读 下载PDF
低秩与字典表达分解的浓雾霾场景图像去雾算法 被引量:9
15
作者 黄文君 李杰 齐春 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第4期118-125,共8页
针对现有图像去雾算法对浓雾霾场景图像去雾效果不理想的问题,提出了一种低秩与字典表达分解的浓雾霾场景图像去雾算法。首先,根据大气散射物理模型与浓雾霾场景图像中“雾”的全局低秩特性,将退化图像看作低秩“雾”图与相对低秩无雾... 针对现有图像去雾算法对浓雾霾场景图像去雾效果不理想的问题,提出了一种低秩与字典表达分解的浓雾霾场景图像去雾算法。首先,根据大气散射物理模型与浓雾霾场景图像中“雾”的全局低秩特性,将退化图像看作低秩“雾”图与相对低秩无雾清晰图像的叠加;其次,将“雾”图表示为字典矩阵与表达矩阵的乘积,从而通过低秩与字典表达分解模型分解出“雾”图;再次,利用双三次插值将分解得到的局部“雾”图推广到全局;最后通过减去“雾”图恢复出无雾的清晰图像。实验结果表明:与现有主流图像去雾算法相比,该算法对浓雾霾场景图像的去雾效果更优,对194幅真实浓雾霾场景图像去雾后,图像平均可见边缘比到达了21.315,平均可见边缘质量因子达到了4.540,图像细节信息得到了较好的恢复。 展开更多
关键词 图像去雾 大气散射物理模型 分解 稀疏表示 双三次插值
在线阅读 下载PDF
基于低秩表示和学习字典的高光谱图像异常探测 被引量:5
16
作者 钮宇斌 王斌 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2016年第6期731-740,共10页
提出一种基于低秩表示和学习字典的高光谱遥感图像异常探测算法.相对于其它低秩矩阵分解方法如鲁棒主成分分析,低秩表示方法更为契合高光谱图像的线性混合模型.该算法将低秩表示模型应用到高光谱图像异常探测问题上来,引入表征背景信息... 提出一种基于低秩表示和学习字典的高光谱遥感图像异常探测算法.相对于其它低秩矩阵分解方法如鲁棒主成分分析,低秩表示方法更为契合高光谱图像的线性混合模型.该算法将低秩表示模型应用到高光谱图像异常探测问题上来,引入表征背景信息的学习字典,大大增强了低秩表示模型对初始参数的鲁棒性.仿真和实际高光谱数据的实验结果表明,所提出的算法有效地提高了异常的探测率,同时对初始参数具有较好的鲁棒性,可以作为一种解决高光谱图像异常探测的有效手段. 展开更多
关键词 高光谱图像 异常探测 矩阵分解 表示 学习字典
在线阅读 下载PDF
融合整体与局部特征的低秩松弛协作表示 被引量:5
17
作者 张盼 练秋生 《计算机研究与发展》 EI CSCD 北大核心 2014年第12期2663-2670,共8页
目前的人脸识别算法经常忽视训练过程中噪声的影响,训练数据受到污染时识别性能会明显下降.针对该问题,提出了融合整体与局部特征的低秩松弛协作表示的人脸识别算法.通过低秩分解抑制训练样本的稀疏噪声,得到更加有效的人脸信息.利用松... 目前的人脸识别算法经常忽视训练过程中噪声的影响,训练数据受到污染时识别性能会明显下降.针对该问题,提出了融合整体与局部特征的低秩松弛协作表示的人脸识别算法.通过低秩分解抑制训练样本的稀疏噪声,得到更加有效的人脸信息.利用松弛协作表示得到判别性更强的编码系数,增强人脸识别系统的判别性.为进一步提高识别率,提取局部特征的同时引入整体特征,运用整体特征和局部特征共同表示人脸图像.实验结果表明,尽管训练过程、测试过程都受到噪声污染,提出的算法对有光照、遮挡及表情变化的正面人脸图像的识别具有很好的鲁棒性,比现有的识别算法拥有更高的识别率. 展开更多
关键词 人脸识别 分解 松弛协作表示 整体特征 局部特征
在线阅读 下载PDF
基于低秩和重加权稀疏表示的红外弱小目标检测算法 被引量:8
18
作者 杨亚东 黄胜一 谭毅华 《应用科学学报》 CAS CSCD 北大核心 2023年第5期753-765,共13页
红外弱小目标检测技术是红外告警系统中的关键技术之一,但如何精确、快速、鲁棒地进行弱小目标检测依然是个难题。该文提出了基于低秩和重加权稀疏表示的红外弱小目标检测算法,设计了新的优化方程,更精确地描述了背景矩阵的秩,利用结构... 红外弱小目标检测技术是红外告警系统中的关键技术之一,但如何精确、快速、鲁棒地进行弱小目标检测依然是个难题。该文提出了基于低秩和重加权稀疏表示的红外弱小目标检测算法,设计了新的优化方程,更精确地描述了背景矩阵的秩,利用结构张量提取红外图像的局部先验信息权重,同时提取目标矩阵的自增强稀疏权重,使模型能够更好地抑制背景中的边缘干扰来提取目标。实验表明:所提算法精度优于现有的经典基线算法,速度超越了一些经典算法。从性能和时间两个方面综合考虑,所提算法有着较好的优越性,对远距离红外弱小目标告警具有积极的意义和良好的应用价值。 展开更多
关键词 小目标检测 红外图像 矩阵分解 稀疏表示
在线阅读 下载PDF
基于低秩分解的鲁棒典型相关分析 被引量:3
19
作者 倪怀发 沈肖波 孙权森 《智能系统学报》 CSCD 北大核心 2017年第4期491-497,共7页
典型相关分析(CCA)是一种经典的多特征提取算法,它能够有效地抽取两组特征之间的相关性,现已被广泛应用于模式识别。在含噪声数据情况下,CCA的特征表示性能受到限制。为了使CCA更好地处理含噪声数据,提出一种基于低秩分解的典型相关分... 典型相关分析(CCA)是一种经典的多特征提取算法,它能够有效地抽取两组特征之间的相关性,现已被广泛应用于模式识别。在含噪声数据情况下,CCA的特征表示性能受到限制。为了使CCA更好地处理含噪声数据,提出一种基于低秩分解的典型相关分析算法——鲁棒典型相关分析(robust canonical correlation analysis,Rb CCA)。Rb CCA首先对特征集进行低秩分解,得到低秩分量和噪声分量,以此分别构建对应的协方差矩阵。通过最大化低秩分量的相关性,同时最小化噪声分量的相关性来建立判别准则函数,进而求取鉴别投影矢量。在MFEAT手写体数据库、ORL和Yale人脸数据中的实验结果表明,在包含噪声的情况下,Rb CCA的识别效果优于现有的典型相关分析方法。 展开更多
关键词 模式识别 特征抽取 数据降维 典型相关分析 表示 分解 分量 噪声分量
在线阅读 下载PDF
基于联合低秩稀疏分解的红外与可见光图像融合 被引量:4
20
作者 王文卿 马笑 刘涵 《信号处理》 CSCD 北大核心 2021年第9期1770-1780,共11页
为进一步提高红外与可见光融合图像的细节信息和整体对比度,降低伪影和噪声,考虑了红外与可见光图像的相关性,提出了一种基于联合低秩稀疏分解的红外与可见光图像融合方法。首先,利用联合低秩稀疏分解方法将红外和可见光源图像分别分解... 为进一步提高红外与可见光融合图像的细节信息和整体对比度,降低伪影和噪声,考虑了红外与可见光图像的相关性,提出了一种基于联合低秩稀疏分解的红外与可见光图像融合方法。首先,利用联合低秩稀疏分解方法将红外和可见光源图像分别分解成共同低秩分量、特有低秩分量和特有稀疏分量;其次,利用非下采样Shearlet变换方法对特有低秩分量进行融合;然后,采用区域能量融合策略实现特有稀疏分量融合;最后,共有低秩分量与融合后的特有低秩分量和特有稀疏分量相加得到最终融合图像。在Nato-camp、Bristol Eden Project和TNO公共测试数据集上进行的实验测试了所提算法性能。实验结果表明,与其他9种融合方法相比,所提方法能够有效地提取红外图像中的目标信息和保留可见光图像的背景信息,熵、互信息、标准差、视觉信息保真度、差异相关系数之和和Q Y客观评价指标明显优于对比方法。 展开更多
关键词 红外与可见光图像融合 联合稀疏分解 非下采样Shearlet变换 区域能量 稀疏表示
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部