期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于联合学习和多级小波特征金字塔的MRI-TRUS图像配准方法
1
作者
蒋宏贵
胡冀苏
+3 位作者
钱旭升
郑毅
周志勇
戴亚康
《计算机工程》
北大核心
2025年第10期270-283,共14页
磁共振图像(MRI)和经直肠超声(TRUS)图像的配准是将术前MRI配准在超声图像上,结合两种模态图像的优势,快速定位病灶区域,在辅助诊断、穿刺、术中导航等医学手术中起重要作用。由于这两种图像模式之间固有的表征差异,具有显著的强度失真...
磁共振图像(MRI)和经直肠超声(TRUS)图像的配准是将术前MRI配准在超声图像上,结合两种模态图像的优势,快速定位病灶区域,在辅助诊断、穿刺、术中导航等医学手术中起重要作用。由于这两种图像模式之间固有的表征差异,具有显著的强度失真和变形,因此在这两种图像模式之间寻找精确的密集对应关系面临较大挑战。为此,提出一种基于联合学习和多级小波特征金字塔(MWFP)的弱监督可变形配准网络框架,对MRI和TRUS图像进行对齐。联合学习是基于预训练的半监督分割网络和配准网络组成的框架,在联合学习框架中分割网络和配准网络继续交替训练,分割网络为配准网络提供前列腺标签约束全局配准,有效解决了配准网络中标签不足的问题。MWFP是采用多分辨小波构成的配准网络,小波金字塔生成的多尺度图像过滤了噪声并减小了两种模式图像之间的表征差异,提高配准网络学习多尺度特征的能力,并在配准网络中设计多尺度特征融合注意力(MSFFA)模块,对特征进行更进一步筛选,为配准提供局部密集对应关系。此外,配准网络提供的形变分割图像和分割标签混合原有的人工标注标签和图像及其分割网络生成的伪标签和其图像放入分割网络继续训练,进一步提高多模态图像分割的性能。在642例公开前列腺MRI和TRUS图像活检数据集上的实验结果表明,所提的配准方法达到最优的Dice相似系数(DSC)值、95%Hausdorff距离(HD95)、互信息(MI)值和结构相似性(SSIM)值,分别是81.05%±1.77%、12.83±1.49 mm、18.12%±4.63%和27.12%±4.63%,优于对比的传统配准方法和先进的深度学习配准方法。此外,所提方法的平均配准时间为0.18±0.02 s,比传统的方法提升了近400倍。所提的配准方法能够准确实时地估计前列腺MRI和TRUS图像之间的形变场,具有更高的配准精度和更快的配准速度。
展开更多
关键词
联合学习
多级小波特征金字塔
可变形配准
多尺度
特征
融合注意力模块
半监督分割
在线阅读
下载PDF
职称材料
题名
基于联合学习和多级小波特征金字塔的MRI-TRUS图像配准方法
1
作者
蒋宏贵
胡冀苏
钱旭升
郑毅
周志勇
戴亚康
机构
徐州医科大学医学影像学院
中国科学院苏州生物医学工程技术研究所
出处
《计算机工程》
北大核心
2025年第10期270-283,共14页
基金
国家自然科学基金面上项目(62271480)
中国科学院青年创新促进会(2021324)
+2 种基金
江苏省重点研发计划(BE2021612)
苏州市科技计划项目(SKY2022052,SYG202321,SSD2023009)
苏州市临床重点病种诊疗技术专项(LCZX202107,LCZX202104)。
文摘
磁共振图像(MRI)和经直肠超声(TRUS)图像的配准是将术前MRI配准在超声图像上,结合两种模态图像的优势,快速定位病灶区域,在辅助诊断、穿刺、术中导航等医学手术中起重要作用。由于这两种图像模式之间固有的表征差异,具有显著的强度失真和变形,因此在这两种图像模式之间寻找精确的密集对应关系面临较大挑战。为此,提出一种基于联合学习和多级小波特征金字塔(MWFP)的弱监督可变形配准网络框架,对MRI和TRUS图像进行对齐。联合学习是基于预训练的半监督分割网络和配准网络组成的框架,在联合学习框架中分割网络和配准网络继续交替训练,分割网络为配准网络提供前列腺标签约束全局配准,有效解决了配准网络中标签不足的问题。MWFP是采用多分辨小波构成的配准网络,小波金字塔生成的多尺度图像过滤了噪声并减小了两种模式图像之间的表征差异,提高配准网络学习多尺度特征的能力,并在配准网络中设计多尺度特征融合注意力(MSFFA)模块,对特征进行更进一步筛选,为配准提供局部密集对应关系。此外,配准网络提供的形变分割图像和分割标签混合原有的人工标注标签和图像及其分割网络生成的伪标签和其图像放入分割网络继续训练,进一步提高多模态图像分割的性能。在642例公开前列腺MRI和TRUS图像活检数据集上的实验结果表明,所提的配准方法达到最优的Dice相似系数(DSC)值、95%Hausdorff距离(HD95)、互信息(MI)值和结构相似性(SSIM)值,分别是81.05%±1.77%、12.83±1.49 mm、18.12%±4.63%和27.12%±4.63%,优于对比的传统配准方法和先进的深度学习配准方法。此外,所提方法的平均配准时间为0.18±0.02 s,比传统的方法提升了近400倍。所提的配准方法能够准确实时地估计前列腺MRI和TRUS图像之间的形变场,具有更高的配准精度和更快的配准速度。
关键词
联合学习
多级小波特征金字塔
可变形配准
多尺度
特征
融合注意力模块
半监督分割
Keywords
joint learning
Multi-level Wavelet Feature Pyramid(MWFP)
deformable registration
Multi-Scale Feature Fusion Attention(MSFFA)module
semi-supervised segmentation
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于联合学习和多级小波特征金字塔的MRI-TRUS图像配准方法
蒋宏贵
胡冀苏
钱旭升
郑毅
周志勇
戴亚康
《计算机工程》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部