功能验证是超大规模集成电路(very large scale integration,VLSI)设计的一个基本环节.随着超大规模电路的普及与发展,在单处理器上对整个电路进行功能验证在可行性和效率上都存在较大的缺陷.基于硬件加速器的功能验证是将整个电路划分...功能验证是超大规模集成电路(very large scale integration,VLSI)设计的一个基本环节.随着超大规模电路的普及与发展,在单处理器上对整个电路进行功能验证在可行性和效率上都存在较大的缺陷.基于硬件加速器的功能验证是将整个电路划分成若干个规模更小的子电路;然后在多个硬件处理器上并行的执行功能验证.当电路划分结果的并行性较优时可提高功能验证的效率,缩短时间周期.类似电路设计中的其他划分问题,用于硬件加速功能验证的电路划分问题可以被抽象成图划分问题.相较于传统图划分问题,硬件加速功能验证的划分问题还需要保证较小的模拟深度和较高的调度并行性.为了满足硬件加速功能验证的划分需求,提出了一种基于传统多级图划分策略的有效算法.该算法结合调度思想,利用电路的关键路径信息和时序信息,将硬件加速功能验证问题转化为有向无环图的多级划分问题.随机电路网表数据的实验结果表明,所构造的算法可以有效的减少关键路径长度并且不会引起切边数的增长恶化.展开更多
文摘功能验证是超大规模集成电路(very large scale integration,VLSI)设计的一个基本环节.随着超大规模电路的普及与发展,在单处理器上对整个电路进行功能验证在可行性和效率上都存在较大的缺陷.基于硬件加速器的功能验证是将整个电路划分成若干个规模更小的子电路;然后在多个硬件处理器上并行的执行功能验证.当电路划分结果的并行性较优时可提高功能验证的效率,缩短时间周期.类似电路设计中的其他划分问题,用于硬件加速功能验证的电路划分问题可以被抽象成图划分问题.相较于传统图划分问题,硬件加速功能验证的划分问题还需要保证较小的模拟深度和较高的调度并行性.为了满足硬件加速功能验证的划分需求,提出了一种基于传统多级图划分策略的有效算法.该算法结合调度思想,利用电路的关键路径信息和时序信息,将硬件加速功能验证问题转化为有向无环图的多级划分问题.随机电路网表数据的实验结果表明,所构造的算法可以有效的减少关键路径长度并且不会引起切边数的增长恶化.