期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进SIFT和多约束的UAV影像匹配方法
1
作者 何明磊 王中元 +2 位作者 戚铭心 杨振宇 袁芳 《合肥工业大学学报(自然科学版)》 北大核心 2025年第2期212-219,共8页
针对尺度不变特征转换(scale invariant feature transform,SIFT)算法在无人机(unmanned aerial vehicle,UAV)影像的匹配过程中存在特征点稳定性差和误匹配多的问题,文章提出一种基于改进SIFT和多约束的UAV影像匹配方法。首先,在对影像... 针对尺度不变特征转换(scale invariant feature transform,SIFT)算法在无人机(unmanned aerial vehicle,UAV)影像的匹配过程中存在特征点稳定性差和误匹配多的问题,文章提出一种基于改进SIFT和多约束的UAV影像匹配方法。首先,在对影像降采样后,综合采用SIFT算法和Scharr-ORB(oriented brief)算法共同进行特征点检测和描述;然后,使用最近邻距离比值法(nearest neighbor distance ratio,NNDR)、双向约束匹配和余弦相似度约束匹配的多约束方法进行特征点的粗匹配;最后,使用最小中值(least median of squares,LMedS)算法计算基础矩阵和随机抽样一致性(random sample consensus,RANSAC)算法计算单应矩阵的多约束方法进行特征点的精匹配,进一步提高匹配精度。结果表明,该方法在获得更多特征点和匹配对数的同时,能够剔除较多的误匹配,使其具有较高的匹配正确率和匹配精度。 展开更多
关键词 无人机(UAV)影像 影像匹配 边缘检测 多约束方法 基础矩阵
在线阅读 下载PDF
Cooperative task allocation for heterogeneous multi-UAV using multi-objective optimization algorithm 被引量:30
2
作者 WANG Jian-feng JIA Gao-wei +1 位作者 LIN Jun-can HOU Zhong-xi 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期432-448,共17页
The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper coo... The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments. 展开更多
关键词 unmanned aerial vehicles cooperative task allocation HETEROGENEOUS CONSTRAINT multi-objective optimization solution evaluation method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部