期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于对地观测需求分析的多星协同任务规划研究 被引量:3
1
作者 崔锦甜 张新 +1 位作者 程博 沈宇 《传感技术学报》 CAS CSCD 北大核心 2020年第3期380-387,共8页
由于对地观测的应用目标不同,各业务部门对遥感数据的需求存在差异。为了在多星协同任务规划中最大限度地满足用户提出的任务需求,构建了对地观测任务需求模型,整合了观测要素对于传感器的观测时限、空间分辨率和光谱需求,并基于改进层... 由于对地观测的应用目标不同,各业务部门对遥感数据的需求存在差异。为了在多星协同任务规划中最大限度地满足用户提出的任务需求,构建了对地观测任务需求模型,整合了观测要素对于传感器的观测时限、空间分辨率和光谱需求,并基于改进层次分析法(AHP)评估了卫星资源对于任务需求的适宜度;进而,提出了以任务需求适宜度及任务优先级为优化子目标的约束满足模型,通过遗传禁忌混合算法实现了时空谱一体化的多星对地协同观测。以“一路”重点区域南海及周边地区为试验区域,结果表明,本文提出的方法取得的目标函数平均值及任务需求适宜度平均值较大,能够对成像点目标分配适宜观测的卫星资源。通过对比三种算法,本算法的运行时间较短,能够满足实际应用需求。 展开更多
关键词 多星协同观测 应用需求 层次分析法(AHP) 多约束优化模型 遗传禁忌算法
在线阅读 下载PDF
Cooperative task allocation for heterogeneous multi-UAV using multi-objective optimization algorithm 被引量:32
2
作者 WANG Jian-feng JIA Gao-wei +1 位作者 LIN Jun-can HOU Zhong-xi 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期432-448,共17页
The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper coo... The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments. 展开更多
关键词 unmanned aerial vehicles cooperative task allocation HETEROGENEOUS CONSTRAINT multi-objective optimization solution evaluation method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部