期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Camstyle改进的行人重识别算法 被引量:3
1
作者 张师林 曹旭 《计算机工程与应用》 CSCD 北大核心 2020年第15期124-131,共8页
行人重识别是计算机领域的一个热门话题,在交通、公共安全和视频监控等场景有着广泛的应用。提出了摄像头风格学习(CSL)结合多粒度损失(MGL)的新方法,在行人重识别领域取得了优势性能。通过摄像头风格学习可以减少由摄像头差异带来的影... 行人重识别是计算机领域的一个热门话题,在交通、公共安全和视频监控等场景有着广泛的应用。提出了摄像头风格学习(CSL)结合多粒度损失(MGL)的新方法,在行人重识别领域取得了优势性能。通过摄像头风格学习可以减少由摄像头差异带来的影响,更好地发挥triplet loss的优势,有效地提高识别精度。在学习过程中结合多粒度损失,利用多个层次的特征图,使学习到的特征更有区分力。在Market-1501和DukemMTMC-reID两个大型数据集上做了对比实验,实验结果表明,提出的方法优于原Camstyle方法,在Rank1上提高了3.7%和3.2%,准确率分别达到93.2%和81.5%。在Market-1501数据集上结合多粒度损失并使用re-ranking方法后,Rank1的准确率为96.1%,mAP的准确率为93.8%,获得了当前已发表最高准确度。 展开更多
关键词 摄像头风格学习 triplet loss 行人重识别 多粒度损失
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部