期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于定向距离变换耦合多粒子滤波器的车道线检测算法 被引量:4
1
作者 张森 董赞强 陈源 《电子测量与仪器学报》 CSCD 北大核心 2020年第6期93-101,共9页
针对复杂环境下车道线检测精度不高的问题,提出了一种定向距离变换耦合多粒子滤波器的车道线检测算法。首先,利用四点透视映射方法,将输入图像转换为鸟瞰图,使车道边界平行,便于车道检测。引入定向距离变换(oriented distance transform... 针对复杂环境下车道线检测精度不高的问题,提出了一种定向距离变换耦合多粒子滤波器的车道线检测算法。首先,利用四点透视映射方法,将输入图像转换为鸟瞰图,使车道边界平行,便于车道检测。引入定向距离变换(oriented distance transform,ODT),将鸟瞰图边缘像素标记到水平和垂直方向上最近的点,寻找初始边界点。其次,利用车道中心、中心到左右边界的角度以及左右车道边界的切角来构建车道线模型,通过分别考虑两个独立的4D粒子空间,以应用于左右车道边界。随后,在车道模型引入多粒子滤波器,利用左右两侧独立传播的粒子来侦测和追踪一对车道边界点,并使用局部线性回归调整得到的边界点。为了优化多粒子滤波器性能,根据粒子状态向量创建动态依赖关系。最后,通过迭代来确定粒子对应的权重,利用多粒子滤波来检测车道线。实验表明,与当前流行车道线检测算法比较,在多种复杂干扰环境下,所提算法具备更高的检测精度与鲁棒性。 展开更多
关键词 车道线检测 多粒子滤波 定向距离变换 鸟瞰图 粒子空间 车道边界跟踪 消失点
在线阅读 下载PDF
基于自适应波形设计的天基雷达目标检测方法 被引量:5
2
作者 王海涛 叶琦 +1 位作者 刘爱芳 贲德 《宇航学报》 EI CAS CSCD 北大核心 2013年第8期1130-1136,共7页
针对天基雷达检测海面目标时杂波特性复杂、场景变化迅速和信杂比低的问题,文中提出一种基于波形自适应设计的目标检测方法。这种方法将每个驻留时间分拆为若干个子驻留,在第1个子驻留上发射线性调频脉冲,并进行预检测和杂波协方差估计... 针对天基雷达检测海面目标时杂波特性复杂、场景变化迅速和信杂比低的问题,文中提出一种基于波形自适应设计的目标检测方法。这种方法将每个驻留时间分拆为若干个子驻留,在第1个子驻留上发射线性调频脉冲,并进行预检测和杂波协方差估计。在后续子驻留中采用多粒子滤波技术对杂波协方差进行动态更新,以适应天基雷达杂波的快速变化。进而在后续子驻留中利用平均平方优化技术自适应的设计波形,并进行主成分分析和广义似然比检验,以提高信杂比和实现恒虚警率检测。最后,文中将海杂波建模为复合高斯过程、将目标建模为若干个具有确定但未知散射幅值的散射体,并进行仿真实验。结果表明,在尖峰性海杂波环境和天基监视雷达配置条件下,用这种目标检测方法实现可靠检测所需的信杂比降低约9dB,可有效改善对弱小目标的检测效果。 展开更多
关键词 天基雷达 自适应波形设计 主成分分析 多粒子滤波 广义似然比检验
在线阅读 下载PDF
Kernel density estimation and marginalized-particle based probability hypothesis density filter for multi-target tracking 被引量:3
3
作者 张路平 王鲁平 +1 位作者 李飚 赵明 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期956-965,共10页
In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis ... In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD. 展开更多
关键词 particle filter with probability hypothesis density marginalized particle filter meanshift kernel density estimation multi-target tracking
在线阅读 下载PDF
Maneuvering target track-before-detect via multiple-model Bernoulli particle filter
4
作者 占荣辉 刘盛启 +1 位作者 胡杰民 张军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3935-3945,共11页
Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multi... Target tracking using non-threshold raw data with low signal-to-noise ratio is a very difficult task, and the model uncertainty introduced by target's maneuver makes it even more challenging. In this work, a multiple-model based method was proposed to tackle such issues. The method was developed in the framework of Bernoulli filter by integrating the model probability parameter and implemented via sequential Monte Carlo(particle) technique. Target detection was accomplished through the estimation of target's existence probability, and the estimate of target state was obtained by combining the outputs of modeldependent filtering. The simulation results show that the proposed method performs better than the TBD method implemented by the conventional multiple-model particle filter. 展开更多
关键词 Bernoulli filter multiple model target maneuver track-before-detect(TBD) sequential Monte Carlo(SMC) technique
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部