期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
复杂背景下的小目标检测算法
被引量:
17
1
作者
郑浦
白宏阳
+1 位作者
李伟
郭宏伟
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2020年第9期1777-1784,共8页
提出一种改进的多类别单阶检测器(SSD)算法.借鉴特征金字塔算法的思想,将Conv4-3层的特征与Conv7、Conv3-3层的特征进行融合,同时增加融合后特征图每个位置对应的默认框数量.在网络结构中增加裁剪-权重分配网络(SENet),对每层的特征通...
提出一种改进的多类别单阶检测器(SSD)算法.借鉴特征金字塔算法的思想,将Conv4-3层的特征与Conv7、Conv3-3层的特征进行融合,同时增加融合后特征图每个位置对应的默认框数量.在网络结构中增加裁剪-权重分配网络(SENet),对每层的特征通道进行权重分配,提升有用的特征权重并抑制无效的特征权重.为了增强网络的泛化能力,对训练数据集进行一系列增强处理.实验结果表明,改进后的算法在VOC数据集(07+12)上的检测效果良好,平均精度均值为80.4%,比改进前的算法提高了2.7%;在COCO数据集(2017)上的平均精度均值为42.5%,比改进前的算法提高了2.3%.所提算法能够准确检测出不小于16×16像素的目标.
展开更多
关键词
深度学习
目标
检测
多类别
单
阶
检测器
(
ssd
)
算法
特征融合
特征增强
在线阅读
下载PDF
职称材料
题名
复杂背景下的小目标检测算法
被引量:
17
1
作者
郑浦
白宏阳
李伟
郭宏伟
机构
南京理工大学能源与动力工程学院
中国人民解放军
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2020年第9期1777-1784,共8页
基金
国家自然科学基金资助项目(61603189).
文摘
提出一种改进的多类别单阶检测器(SSD)算法.借鉴特征金字塔算法的思想,将Conv4-3层的特征与Conv7、Conv3-3层的特征进行融合,同时增加融合后特征图每个位置对应的默认框数量.在网络结构中增加裁剪-权重分配网络(SENet),对每层的特征通道进行权重分配,提升有用的特征权重并抑制无效的特征权重.为了增强网络的泛化能力,对训练数据集进行一系列增强处理.实验结果表明,改进后的算法在VOC数据集(07+12)上的检测效果良好,平均精度均值为80.4%,比改进前的算法提高了2.7%;在COCO数据集(2017)上的平均精度均值为42.5%,比改进前的算法提高了2.3%.所提算法能够准确检测出不小于16×16像素的目标.
关键词
深度学习
目标
检测
多类别
单
阶
检测器
(
ssd
)
算法
特征融合
特征增强
Keywords
deep learning
target detection
single-shot-multibox-detector(
ssd
)algorithm
feature fusion
feature enhancement
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
复杂背景下的小目标检测算法
郑浦
白宏阳
李伟
郭宏伟
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2020
17
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部