期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
处理多类不平衡数据的SVM分类算法 被引量:7
1
作者 李珍香 王文剑 郭虎升 《计算机工程与设计》 CSCD 北大核心 2014年第7期2499-2503,共5页
针对多类不平衡数据分类准确率低的问题,提出一种基于空间扩展的支持向量机学习算法(support vector machine algorithm based on space spreading,SS-SVM)。根据空间扩展原理,在多维欧式空间中通过空间扩展对少类数据进行上采样,使其... 针对多类不平衡数据分类准确率低的问题,提出一种基于空间扩展的支持向量机学习算法(support vector machine algorithm based on space spreading,SS-SVM)。根据空间扩展原理,在多维欧式空间中通过空间扩展对少类数据进行上采样,使其处理数据时减少小区块的影响;降低数据不平衡度以优化分类器组;在扩展的数据集上训练SVM分类器。标准数据集上的实验结果表明,与几种经典的算法相比,SS-SVM在多类不平衡数据分类上可获得令人满意的分类结果,对少类数据分类精度要求较高的问题尤为有效。 展开更多
关键词 多类不平衡数据 支持向量机 空间扩展 小区快 上采样 SS-SVM算法
在线阅读 下载PDF
多类不平衡数据上的分类器性能比较研究 被引量:5
2
作者 倪黄晶 王蔚 《计算机工程》 CAS CSCD 北大核心 2011年第10期160-161,164,共3页
不同的基分类器对不同分布类型的多类别不平衡数据的适应性存在较大差异。为此,针对分类器的选用问题,在分析比较准确率(ACC)及曲线下面积(AUC)的评价标准基础上,选择基于AUC的分类器评价方法,将支持向量机、决策树和贝叶斯分类器应用... 不同的基分类器对不同分布类型的多类别不平衡数据的适应性存在较大差异。为此,针对分类器的选用问题,在分析比较准确率(ACC)及曲线下面积(AUC)的评价标准基础上,选择基于AUC的分类器评价方法,将支持向量机、决策树和贝叶斯分类器应用于标准数据集中,并采用AUC来评价结果,得出相关结论:在多类不平衡数据上,贝叶斯是最好的基分类器,且SVM分类器存在一定改进空间。 展开更多
关键词 多类不平衡数据 基分 ROC曲线下面积 准确率
在线阅读 下载PDF
多类不平衡数据分类方法综述 被引量:18
3
作者 李昂 韩萌 +2 位作者 穆栋梁 高智慧 刘淑娟 《计算机应用研究》 CSCD 北大核心 2022年第12期3534-3545,共12页
现实中许多领域产生的数据通常具有多个类别并且是不平衡的。在多类不平衡分类中,类重叠、噪声和多个少数类等问题降低了分类器的能力,而有效解决多类不平衡问题已经成为机器学习与数据挖掘领域中重要的研究课题。根据近年来的多类不平... 现实中许多领域产生的数据通常具有多个类别并且是不平衡的。在多类不平衡分类中,类重叠、噪声和多个少数类等问题降低了分类器的能力,而有效解决多类不平衡问题已经成为机器学习与数据挖掘领域中重要的研究课题。根据近年来的多类不平衡分类方法的文献,从数据预处理和算法级分类方法两方面进行了分析与总结,并从优缺点和数据集等方面对所有算法进行了详细分析。在数据预处理方法中,介绍了过采样、欠采样、混合采样和特征选择方法,对使用相同数据集算法的性能进行了比较。从基分类器优化、集成学习和多类分解技术三个方面对算法级分类方法展开介绍和分析。最后对多类不平衡数据分类研究领域的未来发展方向进行总结归纳。 展开更多
关键词 多类不平衡数据 数据预处理方法 算法级分方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部