期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度卷积网络的结直肠全扫描病理图像的多种组织分割 被引量:4
1
作者 蔡程飞 徐军 +2 位作者 梁莉 魏建华 周洋枢 《中国生物医学工程学报》 CAS CSCD 北大核心 2017年第5期632-636,共5页
结直肠全扫描图像处理困难,原因在于图像的数据量大、结构复杂、信息含量多。目前对于结直肠癌组织病理图像的研究通常包含肿瘤和基质两种组织类型,只有一小部分研究可以解决多种组织的问题,但又不是处理全扫描的结直肠病理图像。提出... 结直肠全扫描图像处理困难,原因在于图像的数据量大、结构复杂、信息含量多。目前对于结直肠癌组织病理图像的研究通常包含肿瘤和基质两种组织类型,只有一小部分研究可以解决多种组织的问题,但又不是处理全扫描的结直肠病理图像。提出一种基于深度卷积网络的结直肠全扫描病理图像进行多种类型组织分割的模型。该模型使用的网络层数有8层,利用深度卷积网络学习结直肠全扫描图像中典型的8种类型的组织,利用训练好的模型对这8种类型的结直肠组织进行分类测试,其测试集分类准确率达92.48%。利用该模型对结直肠全扫描病理图像中的8种类型组织进行分割,首先对全扫描图像进行预处理,分成5000像素×5000像素大小的图像块,然后标记出每一张中的8种类型的组织,最后将所得到的标记结果进行拼接,从而获得整张结直肠全扫描病理图像的8种类型组织的标记结果。该方法对8种类型的组织分割的准确率比较高,有一定辅助诊断的帮助。 展开更多
关键词 全扫描病理图像 多种类型组织 深度卷积网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部