期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多种小波变换的一维卷积循环神经网络的风电机组轴承故障诊断 被引量:23
1
作者 陈维兴 崔朝臣 +1 位作者 李小菁 赵卉 《计量学报》 CSCD 北大核心 2021年第5期615-622,共8页
为解决在复杂工况下风力发电机组轴承故障诊断虚警率高的问题,提出一种端到端的混合深度学习框架——基于多种小波变换的一维卷积循环神经网络。首先,通过多种小波变换得到多个时-频矩阵,以充分提取信号特征;再通过一种扩展的LSTM,对多... 为解决在复杂工况下风力发电机组轴承故障诊断虚警率高的问题,提出一种端到端的混合深度学习框架——基于多种小波变换的一维卷积循环神经网络。首先,通过多种小波变换得到多个时-频矩阵,以充分提取信号特征;再通过一种扩展的LSTM,对多通道时-频矩阵不同时间步信息进行提取,捕获时-频数据时空特征;最后,通过全局池化层和分类层对故障状态进行分类。实验结果表明:在复杂工况下,多种小波变换的一维卷积循环神经网络对风力发电机组轴承故障识别率能够达到95%以上。 展开更多
关键词 计量学 滚动轴承 风力发电机组 故障诊断 多种小波变换 一维卷积循环神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部