期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLO v3的肉牛多目标骨架提取方法 被引量:12
1
作者 张宏鸣 李永恒 +3 位作者 周利香 汪润 李书琴 王红艳 《农业机械学报》 EI CAS CSCD 北大核心 2022年第3期285-293,共9页
针对肉牛行为识别过程中,多目标骨架提取精度随目标数量增多而大幅降低的问题,提出了一种改进YOLO v3算法(Not classify RFB-YOLO v3,NC-YOLO v3),在主干网络后引入RFB(Receptive field block)扩大模型感受野,剔除分类模块提高检测效率... 针对肉牛行为识别过程中,多目标骨架提取精度随目标数量增多而大幅降低的问题,提出了一种改进YOLO v3算法(Not classify RFB-YOLO v3,NC-YOLO v3),在主干网络后引入RFB(Receptive field block)扩大模型感受野,剔除分类模块提高检测效率,结合8SH(8Stacked Hourglass)算法实现实际养殖环境下的肉牛多目标检测与骨架提取。实验为肉牛骨架设置16个关键节点形成肉牛骨架点位信息,通过对图像多尺度和多方向训练提高检测精度。针对多目标骨架提取模型检测的关键点信息进行统计分析,提出一种对肉牛站立和卧倒行为识别的方法。实验结果表明:在目标检测方面,NC-YOLO v3模型的召回率可达99.00%,精度可达97.80%,平均精度可达97.18%。与原模型相比,平均精度提高4.13个百分点,去除的网络参数量为13.81 MB;在单牛骨架提取方面,采用8层堆叠的Hourglass网络检测关键点位置,平均精度均值可达90.75%;在多牛骨架提取方面,NC-YOLO v3构建的模型相对于YOLO v3构建的模型,平均精度均值提高4.11个百分点,达到66.05%。 展开更多
关键词 肉牛 多目标骨架提取 目标检测 关键点检测 RFB YOLO v3
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部