期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于BPNN和MOOGA的高速联轴器多目标优化方法 被引量:2
1
作者 王艺琳 王维民 +2 位作者 李维博 王珈乐 张帅 《机电工程》 CAS 北大核心 2024年第2期236-244,共9页
针对高转速、复合工况下膜盘联轴器难以保证其强度特性问题,对已有膜盘联轴器强度及动力学特性进行了研究,提出了一种基于反向传播神经网络(BPNN)和多目标优化遗传算法(MOOGA)的高速联轴器多目标优化方法。首先,为了得到优化所需的关键... 针对高转速、复合工况下膜盘联轴器难以保证其强度特性问题,对已有膜盘联轴器强度及动力学特性进行了研究,提出了一种基于反向传播神经网络(BPNN)和多目标优化遗传算法(MOOGA)的高速联轴器多目标优化方法。首先,为了得到优化所需的关键参数,采用了正交实验结合多因素方差分析的方法,选取了联轴器优化参数;然后,基于已选取的关键参数,采用BPNN方法构建了截面应力和弯曲刚度的目标函数,并将其与多项式拟合方法进行了对比,对BPNN方法的精确性进行了验证;最后,采用MOOGA方法对目标函数进行了多目标优化,并将优化前后结果进行了对比分析。研究结果表明:采用BPNN结合MOOGA的方法对联轴器设计参数进行优化,在满足联轴器刚度需求的情况下,可有效降低联轴器膜盘的危险截面应力;优化后,联轴器危险应力减小了18.2%,弯曲刚度降低了5.05%,联轴器角向补偿能力增加了0.1°,从而证明了仿真的有效性。该结果可以为挠性联轴器参数优化设计提供参考。 展开更多
关键词 膜盘联轴器 机械强度 动力学特性 反向传播神经网络 多目标优化遗传算法 参数优化
在线阅读 下载PDF
基于ANSYS workbench的转膛体优化设计 被引量:5
2
作者 张哲伟 杨臻 吴朝峰 《兵器装备工程学报》 CAS 北大核心 2020年第10期35-40,共6页
利用UG与ANSYS联合仿真对转膛武器的转膛体进行优化设计,通过强度分析、拓扑优化找出可优化区域,建立设计变量,以质量、最大应力、最大应变为目标函数,对转膛体进行多目标遗传算法优化,并对比优化前后应力、应变与质量的变化。经过优化... 利用UG与ANSYS联合仿真对转膛武器的转膛体进行优化设计,通过强度分析、拓扑优化找出可优化区域,建立设计变量,以质量、最大应力、最大应变为目标函数,对转膛体进行多目标遗传算法优化,并对比优化前后应力、应变与质量的变化。经过优化分析转膛体的质量减小16.77%,最大应力减小28.35%,同时最大应变量增加了28.15%。优化设计在满足强度要求的情况下,减小质量,改善了转膛体应力集中情况,最终验证了优化设计的合理性。 展开更多
关键词 转膛体 联合仿真 拓扑优化 多目标遗传算法优化 试验验证
在线阅读 下载PDF
内置永磁体的盘式磁流变制动器结构优化设计及仿真分析 被引量:5
3
作者 吴礼繁 胡国良 +1 位作者 易锋 喻理梵 《现代制造工程》 CSCD 北大核心 2021年第8期138-146,共9页
为提高传统磁流变制动器制动性能及其安全性,提出一种内置永磁体的盘式磁流变制动器。阐述了内置永磁体的磁流变制动器工作原理,制动器在失电情况下,制动转矩在内置永磁体的作用下仍可维持一个安全值,一定程度上提高了制动器的防故障性... 为提高传统磁流变制动器制动性能及其安全性,提出一种内置永磁体的盘式磁流变制动器。阐述了内置永磁体的磁流变制动器工作原理,制动器在失电情况下,制动转矩在内置永磁体的作用下仍可维持一个安全值,一定程度上提高了制动器的防故障性能。对制动器磁路进行了分析,同时建立了制动转矩数学模型,利用ANSYS软件对其电磁场进行仿真。以制动器质量和制动转矩为优化目标,采用多目标遗传算法进行优化,得到Pareto最优解集,对其进行相关的赋权,得到制动器最优结构尺寸,对优化前及优化后的磁流变制动器进行对比,发现电流为1 A时,制动转矩由80 N·m增加到105 N·m,提升了31.3%;同时制动器质量由5.4 kg减少到4.8 kg,质量减轻了11%。 展开更多
关键词 磁流变制动器 永磁体 多目标遗传算法优化 性能分析
在线阅读 下载PDF
基于流体力学和电磁学方程数值求解的飞行器气动隐身一体化设计 被引量:15
4
作者 何开锋 钱炜祺 +1 位作者 陈坚强 郭勇颜 《空气动力学学报》 EI CSCD 北大核心 2009年第2期180-185,共6页
介绍了基于流体力学和电磁学方程数值求解的飞行器气动隐身一体化设计方法。首先介绍了精度相对较高的飞行器气动和隐身特性数值计算方法,即,对于气动性能计算,求解的是结构网格上的NS方程加BL代数湍流模式;对于隐身特性计算,是用时域... 介绍了基于流体力学和电磁学方程数值求解的飞行器气动隐身一体化设计方法。首先介绍了精度相对较高的飞行器气动和隐身特性数值计算方法,即,对于气动性能计算,求解的是结构网格上的NS方程加BL代数湍流模式;对于隐身特性计算,是用时域有限体积法来求解电磁学微分方程以获取RCS值。由于采用了高精度的数值方法,优化时单一设计点的气动性能计算和隐身性能计算变得较为耗时,因此在进行多目标遗传算法优化时本文采用了一种"少量样本计算+Kriging响应面模型建模"的优化策略。针对某类似X-47飞行器的一体化设计算例计算表明,上述设计方法是可行的,实现了优化设计中引入高精度的性能分析方法,有望提高优化结果的可信度。 展开更多
关键词 气动隐身一体化设计 多目标优化遗传算法 Kriging响应面方法
在线阅读 下载PDF
Multi-objective optimization of stamping forming process of head using Pareto-based genetic algorithm 被引量:10
5
作者 周杰 卓芳 +1 位作者 黄磊 罗艳 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3287-3295,共9页
To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based gen... To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure. 展开更多
关键词 stamping forming HEADS finite element analysis central composite experimental design response surface methodology multi-objective genetic algorithm
在线阅读 下载PDF
Performance optimization of electric power steering based on multi-objective genetic algorithm 被引量:2
6
作者 赵万忠 王春燕 +1 位作者 于蕾艳 陈涛 《Journal of Central South University》 SCIE EI CAS 2013年第1期98-104,共7页
The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-obj... The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-objective genetic algorithm (GA) was designed. Based on the model of system, the quantitative formula of the road feel, sensitivity, and operation stability of the steering were induced. Considering the road feel and sensitivity of steering as optimization objectives, and the operation stability of steering as constraint, the multi-objective GA was proposed and the system parameters were optimized. The simulation results show that the system optimized by multi-objective genetic algorithm has better road feel, steering sensibility and steering stability. The energy of steering road feel after optimization is 1.44 times larger than the one before optimization, and the energy of portability after optimization is 0.4 times larger than the one before optimization. The ground test was conducted in order to verify the feasibility of simulation results, and it is shown that the pure electric bus equipped with the recirculating ball-type EPS system can provide better road feel and better steering portability for the drivers, thus the optimization methods can provide a theoretical basis for the design and optimization of the recirculating ball-type EPS system. 展开更多
关键词 vehicle engineering electric power steering multi-objective optimization genetic algorithm
在线阅读 下载PDF
NSGA Ⅱ based multi-objective homing trajectory planning of parafoil system 被引量:1
7
作者 陶金 孙青林 +1 位作者 陈增强 贺应平 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3248-3255,共8页
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki... Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system. 展开更多
关键词 parafoil system homing trajectory planning multi-objective optimization non-dominated sorting genetic algorithm(NSGA) non-uniform b-spline
在线阅读 下载PDF
Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAⅡ 被引量:6
8
作者 Abolfazl Khalkhali 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期121-133,共13页
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo... In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method. 展开更多
关键词 automotive S-rail crashworthiness technique for ordering preferences by similarity to ideal solution(TOPSIS) method group method of data handling(GMDH) algorithm multi-objective optimization modified non-dominated sorting genetic algorithm(NSGA II) Pareto front
在线阅读 下载PDF
An integer multi-objective optimization model and an enhanced non-dominated sorting genetic algorithm for contraflow scheduling problem
9
作者 李沛恒 楼颖燕 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2399-2405,共7页
To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algor... To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity. 展开更多
关键词 hurricane evacuation contraflow scheduling multi-objective optimization NSGA-II
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部