期刊文献+
共找到791篇文章
< 1 2 40 >
每页显示 20 50 100
多目标进化算法的改进在齿轮减速器中的应用
1
作者 高淑芝 任学鹏 张义民 《机械设计与制造》 北大核心 2025年第4期190-193,197,共5页
分解的多目标算法是利用一组权重向量将一个多目标优化问题分解为一组标量子问题。针对当帕累托前沿是一个多峰和断裂等其他较复杂的情况下,均匀分布的权重向量往往收敛效果较差的问题,提出了一种种群分区管理的自适应方法用来保持种群... 分解的多目标算法是利用一组权重向量将一个多目标优化问题分解为一组标量子问题。针对当帕累托前沿是一个多峰和断裂等其他较复杂的情况下,均匀分布的权重向量往往收敛效果较差的问题,提出了一种种群分区管理的自适应方法用来保持种群的多样性与收敛性之间的平衡。首先,采用了一种均匀随机的权重向量生成方式进行初始化;其次,采用Tchebycheff分解方法进行子代的更新;再次,将提出的自适应方法对分解的多目标进化算法进行了改进;最后,通过在标准测试函数和齿轮减速器的优化仿真,证明了提出的算法的有效性。 展开更多
关键词 多目标优化 分解算法 自适应 进化算法应用
在线阅读 下载PDF
面向工业动态取送货问题的分解多目标进化算法
2
作者 蔡俊创 朱庆灵 +2 位作者 林秋镇 李坚强 明仲 《计算机科学》 北大核心 2025年第1期331-344,共14页
由于工业动态取送货问题具有垛口、时间窗、容量、后进先出装载等多种约束,现有的车辆路径算法大多只优化一个加权目标函数,在求解过程中难以保持解的多样性,所以容易陷入局部最优区域而停止收敛。针对上述问题,提出了一种融合高效局部... 由于工业动态取送货问题具有垛口、时间窗、容量、后进先出装载等多种约束,现有的车辆路径算法大多只优化一个加权目标函数,在求解过程中难以保持解的多样性,所以容易陷入局部最优区域而停止收敛。针对上述问题,提出了一种融合高效局部搜索策略的分解多目标进化算法。首先,该算法将工业动态取送货问题建模成多目标优化问题,进一步将其分解为多个子问题并同时进行求解。然后,利用交叉操作增强解的多样性,再使用局部搜索加快收敛速度。因此,该算法在求解该多目标优化问题时能够更好地平衡解的多样性和收敛性。最后,从种群中选择一个最好的解来完成当前时段的取送货任务。基于64个华为公司实际测试问题的仿真结果表明,该算法在求解工业动态取送货问题上的性能表现最优;同时,在20个京东物流大规模配送问题上的实验也验证了该算法良好的泛化性。 展开更多
关键词 动态取送货问题 分解方法 多目标进化算法 局部搜索 组合优化
在线阅读 下载PDF
基于半监督迁移学习的动态多目标进化算法
3
作者 刘阚蓉 李岩 +2 位作者 谭树彬 刘圆超 刘建昌 《控制理论与应用》 北大核心 2025年第1期1-12,共12页
动态多目标优化问题中的目标函数随系统运行环境的动态变化而改变,这将导致其Pareto最优前沿发生动态变化.在大多数动态多目标优化问题中,不同环境之间存在一定相关性,也就是说动态多目标优化算法可以利用以往环境信息对动态变化的Paret... 动态多目标优化问题中的目标函数随系统运行环境的动态变化而改变,这将导致其Pareto最优前沿发生动态变化.在大多数动态多目标优化问题中,不同环境之间存在一定相关性,也就是说动态多目标优化算法可以利用以往环境信息对动态变化的Pareto最优前沿进行实时追踪.为充分利用环境信息去实时追踪动态变化的Pareto最优前沿,本文提出一种基于半监督迁移学习的动态多目标进化算法(SSTL-DMOEA).SSTL-DMOEA包括两个核心组成部分,首先采用一种半监督知识迁移机制将历史环境有利信息迁移至当前环境,以帮助算法在当前环境生成较好的初始种群,从而可以提高算法在当前环境中的搜寻效率;其次,通过利用历史Pareto最优解集的中心点和新环境的进化信息在目标域中生成一系列样本点,这些点可以帮助算法建立更准确的预测模型.与4种先进的动态多目标优化算法相比,SSTL-DMOEA在处理动态多目标优化问题上具有一定的优越性. 展开更多
关键词 动态多目标优化 进化算法 知识迁移
在线阅读 下载PDF
面向复杂约束多目标优化问题的双种群双阶段进化算法
4
作者 袁志超 杨磊 +2 位作者 田井林 魏晓威 李康顺 《计算机应用》 北大核心 2025年第8期2656-2665,共10页
针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行... 针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行性规则和改进的epsilon约束处理方法进行更新。在第一阶段,主种群和副种群分别探索约束Pareto前沿(CPF)与无约束Pareto前沿(UPF),从而获取UPF和CPF的位置信息;在第二阶段,设计一种分类方法,根据UPF与CPF的位置对CMOP进行分类,从而对不同类型的CMOP执行特定的进化策略;此外,提出一种随机扰动策略,在副种群进化到CPF附近时,对它进行随机扰动以产生一些位于CPF上的个体,从而促进主种群在CPF上的收敛与分布。把所提算法与6个具有代表性的算法:CMOES(Constrained Multi-objective Optimization based on Even Search)、dp-ACS(dual-population evolutionary algorithm based on Adaptive Constraint Strength)、c-DPEA(DualPopulation based Evolutionary Algorithm for constrained multi-objective optimization)、CAEAD(Constrained Evolutionary Algorithm based on Alternative Evolution and Degeneration)、BiCo(evolutionary algorithm with Bidirectional Coevolution)和DDCMOEA(Dual-stage Dual-population Evolutionary Algorithm for Constrained Multiobjective Optimization)在LIRCMOP和DASCMOP两个测试集上进行实验比较。实验结果表明,DPDSEA在23个问题中取得了15个最优反转世代距离(IGD)值和12个最优超体积(HV)值,展现了DPDSEA在处理复杂CMOP时显著的性能优势。 展开更多
关键词 约束多目标优化 双种群 双阶段 进化算法 约束处理方法 分类方法 随机扰动
在线阅读 下载PDF
基于改进多目标进化算法的栅格地图路径规划
5
作者 董德金 王常成 蔡云泽 《上海交通大学学报》 北大核心 2025年第10期1558-1567,共10页
大范围栅格地图的多目标路径规划具有节点规模大、目标数量多的特征,现有算法难以平衡求解帕累托前沿(PF)的速度与质量,因此研究面向PF的高效优化算法具有重要的理论意义.首先,提出一种基于代价向量的加权图建模方法,并在此基础上研究... 大范围栅格地图的多目标路径规划具有节点规模大、目标数量多的特征,现有算法难以平衡求解帕累托前沿(PF)的速度与质量,因此研究面向PF的高效优化算法具有重要的理论意义.首先,提出一种基于代价向量的加权图建模方法,并在此基础上研究适用于大规模问题的优化算法,相比传统图搜索算法显著降低了时间成本.其次,针对PF求解质量不足的问题,提出一种改进的多目标进化算法并包含新的初始化策略,以及基于角度和偏移密度的思想设计个体和环境选择策略.该改进措施综合考虑种群多样性和收敛性,从而提升了求解效率.最后,通过仿真实验对比,验证了所提改进算法的有效性. 展开更多
关键词 栅格地图 多目标路径规划 多目标进化算法 帕累托前沿
在线阅读 下载PDF
解决动态约束多目标问题的复合预测进化算法
6
作者 郭知业 魏静萱 《控制理论与应用》 北大核心 2025年第2期335-343,共9页
动态约束多目标问题在路口交通管理、节能电力调度等现实场景中出现较多,其目标函数和约束条件都会随时间(环境)发生连续缓慢变化.求解这类动态问题的关键,是有效追踪问题的随环境变化的一组最优解集.为求解此类问题,首先,将约束变化分... 动态约束多目标问题在路口交通管理、节能电力调度等现实场景中出现较多,其目标函数和约束条件都会随时间(环境)发生连续缓慢变化.求解这类动态问题的关键,是有效追踪问题的随环境变化的一组最优解集.为求解此类问题,首先,将约束变化分为2类,并针对两类变化提出2个约束预测器,用以追踪可行区域;其次,将约束预测器与非线性预测器组合成复合预测策略,根据问题的不同变化情况使用策略中的对应预测器,消耗较少的资源获得预测解,加速寻优过程;再次,应用基于分解的多目标优化算法,将预测解优化得到最终的最优解.所提出的基于复合预测的动态多目标优化算法在8个动态变化的问题上与6个典型算法进行对比测试,实验结果表明,所提算法获得的解集在收敛性和多样性上具有显著优势,复合预测策略的预测性能较优. 展开更多
关键词 动态多目标优化 进化算法 动态约束条件
在线阅读 下载PDF
求解全局与局部最优解的多模态多目标进化算法研究进展与挑战
7
作者 吴同轩 冀俊忠 杨翠翠 《北京工业大学学报》 北大核心 2025年第7期867-882,共16页
为了揭示目前求解全局与局部最优解的多模态多目标进化算法研究与发展现状,首先,介绍了具有全局和局部最优解集的多模态多目标优化问题(multimodal multiobjective optimization problem, MMOP),说明了其相关定义和特点;其次,根据现有... 为了揭示目前求解全局与局部最优解的多模态多目标进化算法研究与发展现状,首先,介绍了具有全局和局部最优解集的多模态多目标优化问题(multimodal multiobjective optimization problem, MMOP),说明了其相关定义和特点;其次,根据现有求解该类问题的进化算法思想给出了一种分类体系,并对其中主要方法的技术特点进行了概述;然后,介绍了目前具有全局和局部最优解集的多模态多目标测试函数集,并给出了常用的评价指标;最后,通过分析领域中的挑战性问题,展望了未来多模态多目标进化算法研究的方向。 展开更多
关键词 多模态多目标优化 进化算法 分类体系 测试函数 评价指标 特征选择
在线阅读 下载PDF
一种基于行列式点过程的代理模型辅助多目标进化算法
8
作者 吴子聪 李金龙 《计算机应用研究》 北大核心 2025年第9期2607-2613,共7页
为了提高用于更新代理模型的解集的多样性和收敛性以提高代理模型准确度,提出一种基于行列式点过程(determinantal point process,DPP)的代理模型辅助多目标进化算法(surrogate-assisted evolutionary algorithm,SAEA)。首先,提出一种... 为了提高用于更新代理模型的解集的多样性和收敛性以提高代理模型准确度,提出一种基于行列式点过程(determinantal point process,DPP)的代理模型辅助多目标进化算法(surrogate-assisted evolutionary algorithm,SAEA)。首先,提出一种基于行列式点过程的模型管理方法,从非支配解集基于行列式点过程选取子集并用真实目标函数评估,再从所有经真实目标函数评估的解中选取子集用于更新代理模型。另一方面,提出一种基于自适应行列式点过程的环境选择方法,在进化过程的早期侧重于提高种群的收敛性,在进化过程的后期侧重于提高种群的多样性。最后,基于DTLZ、WFG、MAF测试问题验证算法的有效性。将所提算法与K-RVEA、KTA2、CSEA等常用算法进行比较,使用IGD+指标进行评估。实验结果显示所提出的算法能得到更优的解集,从而证明了其高计算代价多目标优化问题上的有效性。 展开更多
关键词 代理辅助多目标优化 进化算法 模型管理 环境选择 行列式点过程 收敛性 多样性
在线阅读 下载PDF
基于镜像判断和改进父代选择的多目标进化算法
9
作者 王嘉诚 邹雨恒 +1 位作者 王珊珊 曾亮 《陕西科技大学学报》 北大核心 2025年第2期215-225,234,共12页
高维多目标进化算法在解决复杂帕累托前沿问题时,常面临收敛性和多样性难以平衡的问题.为解决这一问题,提出了一种基于镜像判断和改进父代选择的高维多目标进化算法.该算法首次结合成就标量函数和全局密度并应用在交配池中,使其在迭代... 高维多目标进化算法在解决复杂帕累托前沿问题时,常面临收敛性和多样性难以平衡的问题.为解决这一问题,提出了一种基于镜像判断和改进父代选择的高维多目标进化算法.该算法首次结合成就标量函数和全局密度并应用在交配池中,使其在迭代过程中不仅关注当前最优解,还兼顾解在整个空间的分布情况,从而实现了收敛性和多样性的统一.此外,针对算法在迭代过程中可能出现镜像的问题,本文提出了解决方案.具体来说,算法首先采用非支配排序,将临界层个体与参考向量相关联,随后判断其是否满足镜像对称准则,若满足则通过全局密度选取个体,达成“内紧外松”的目的,最大限度保证候选解的分布性,从而有效解决了选择压力不均的问题.最后将本文算法与最新的五种多目标算法在4种不同维度的测试问题上进行对比实验,并应用在两个实际案例中.实验结果表明:所提算法不仅能高效解决高维多目标优化问题,且能有效平衡收敛性和多样性. 展开更多
关键词 多目标进化算法 交配选择 聚合距离 收敛性 分布性
在线阅读 下载PDF
深度强化学习引导的多种群协同进化超多目标优化算法
10
作者 许莹 刘佳 +2 位作者 陈斌辉 刘益萍 刘志中 《计算机学报》 北大核心 2025年第10期2371-2405,共35页
超多目标优化问题因高维决策空间与复杂计算成本等特点而极具挑战。作为求解方法之一,多种群协同进化算法通过协同机制在求解此类问题时有较好的效果,但仍存在计算成本高、搜索效率低等局限性。近年来,强化学习因其卓越的决策能力被引... 超多目标优化问题因高维决策空间与复杂计算成本等特点而极具挑战。作为求解方法之一,多种群协同进化算法通过协同机制在求解此类问题时有较好的效果,但仍存在计算成本高、搜索效率低等局限性。近年来,强化学习因其卓越的决策能力被引入进化算法框架,成为提升算法性能的关键技术。因此,本文提出了一种深度强化学习引导的多种群协同进化超多目标优化算法DQNMaOEA,用于求解复杂的超多目标优化问题。为了有效引导大规模决策空间的搜索,提高算法在高维目标空间的搜索能力,本文提出了一种基于深度强化学习模型的自适应子种群选择方法,通过强化学习与环境进行交互选择具有更高潜力的子种群,然后与基于效用值选择的子种群进行协同进化,产生具有更优多样性与收敛性的子代解。此外,为了降低计算成本,提高算法的搜索效率,本文进一步提出了一种自适应子种群计算资源分配策略,根据当前子种群对整个种群优化过程的效用值改进贡献,动态分配子种群的适应值评估次数。为了验证算法及相关策略的性能,本文在大量基准测试集问题及实际物流大规模超多目标车辆路径问题实例上,与现有的不同类型前沿算法进行了大量对比实验。实验分析表明,本文提出的算法在求解性能与解质量上显著优于大部分对比算法。具体表现为:在评估解收敛性与多样性的综合指标上,DQNMaOEA在80%以上的基准测试实例中取得最优结果,较现有最佳算法的平均性能指标提升达1.2~2.0倍。而在计算效率方面,算法的平均运行时间较对比算法降低约25%。特别地,在7个实际物流问题实例中,算法在解的性能指标上获得6项最优结果,且求解效率显著优于对比算法。这些结果充分验证了该算法在解质量、计算效率和实际应用潜力上的综合优势。 展开更多
关键词 多目标优化 多目标进化算法 自适应种群选择 自适应计算资源分配 强化学习
在线阅读 下载PDF
基于改进灰狼算法求解武器目标分配问题
11
作者 陈阳 李姜 +2 位作者 王烨 高远 郭立红 《兵器装备工程学报》 北大核心 2025年第6期227-233,共7页
针对群智能优化算法求解武器目标分配问题搜索效率低的现状,提出了一种改进的灰狼优化算法。不同于传统的灰狼优化算法,该研究创新性地借鉴了遗传算法的思想,在灰狼优化过程中引入了交叉算子,这一改进不仅增加了种群内部的信息共享机会... 针对群智能优化算法求解武器目标分配问题搜索效率低的现状,提出了一种改进的灰狼优化算法。不同于传统的灰狼优化算法,该研究创新性地借鉴了遗传算法的思想,在灰狼优化过程中引入了交叉算子,这一改进不仅增加了种群内部的信息共享机会,还有效提升了算法的全局探索能力,使得算法能够在更大范围内寻找最优解,避免陷入局部最优的问题。仿真结果表明,在目标数量与武器数量均为20的测试组中,改进后的灰狼优化算法相较于标准的粒子群优化算法(PSO)和传统的灰狼优化算法(GWO),取得了更为优异的成绩,改进算法的适应度中位数相对于PSO和GWO分别下降了11.57%和6.37%。改进灰狼优化算法显著提升了GWO算法的全局寻优能力,且能够有效解决WTA问题。 展开更多
关键词 武器目标分配问题 群智能优化 灰狼优化算法 粒子群算法 进化计算
在线阅读 下载PDF
基于动态分布计算资源的昂贵多目标优化算法
12
作者 张晶 裴东兴 +1 位作者 马瑾 沈大伟 《高技术通讯》 北大核心 2025年第8期861-867,共7页
代理模型辅助的多目标优化算法广泛用于求解评价昂贵的多目标优化问题,其中,采用样本更新模型是提高算法性能的必要过程。然而,传统方法未对模型的状态进行评估而同时更新所有模型,浪费了大量的计算资源。针对该问题,本文提出基于动态... 代理模型辅助的多目标优化算法广泛用于求解评价昂贵的多目标优化问题,其中,采用样本更新模型是提高算法性能的必要过程。然而,传统方法未对模型的状态进行评估而同时更新所有模型,浪费了大量的计算资源。针对该问题,本文提出基于动态分布计算资源的昂贵多目标优化算法,该算法提出了自适应选择模型更新策略。具体地,依据模型对当前种群估值的不确定度来判断模型的性能,当种群中解不确定度的中值大于均值时,该目标函数模型被选择进行更新;当种群中的解不确定度的中值小于均值时,该模型不被更新。为了验证该策略的有效性,将该策略用于代理模型辅助的自适应贝叶斯优化算法(an adaptive Bayesian approach to surrogate-assisted evolutionary algorithm,ABSAEA)和代理模型辅助的参考向量引导的进化算法(surrogate-assisted reference vector guided evolutionary algorithm,KRVEA)中,并且在DTLZ函数上进行实验。实验结果表明,该算法可以显著降低昂贵多目标优化算法的计算复杂度。 展开更多
关键词 进化算法 昂贵多目标优化问题 代理模型 填充准则 不确定度
在线阅读 下载PDF
基于网格拥挤度的自适应参考点多目标优化算法
13
作者 王学武 高永亮 顾幸生 《华东理工大学学报(自然科学版)》 北大核心 2025年第4期522-537,共16页
在多目标优化中,对于搜索到的种群要兼顾收敛性和分布性。基于指标的参考点自适应多目标优化算法(AR-MOEA)算法强调IGD-NS指标的最优,算法收敛过程加快,容易陷入局部最优,导致种群不能覆盖到完整的Pareto前沿。本文提出了一种基于网格... 在多目标优化中,对于搜索到的种群要兼顾收敛性和分布性。基于指标的参考点自适应多目标优化算法(AR-MOEA)算法强调IGD-NS指标的最优,算法收敛过程加快,容易陷入局部最优,导致种群不能覆盖到完整的Pareto前沿。本文提出了一种基于网格拥挤度的自适应参考点多目标优化算法(AR-MOEA-GC),该算法区分了种群中贡献个体与非贡献个体的适应度计算方法,保证种群的分布性和收敛性;同时,为了加快种群在算法后期的收敛速度,融入了参考点调整策略,辅助种群向真实Pareto进化。将改进的算法与6个先进的多目标进化算法在3类测试函数上测试,结果表明AR-MOEA-GC在三维的多目标优化问题上有着一定的竞争力。 展开更多
关键词 进化算法 IGD-NS指标 多目标优化 网格拥挤度 进化计算
在线阅读 下载PDF
基于变时段设计改进多目标差分进化算法的风/光/火/储日前优化调度 被引量:3
14
作者 齐郑 徐希茜 +1 位作者 熊巍 陈艳波 《电力系统保护与控制》 EI CSCD 北大核心 2024年第16期62-71,共10页
在高比例新能源馈入的新型电力系统中,新能源出力的不确定性导致火电难以满足调度计划的精度需求,风/光/火/储系统的经济调度求解算法面临严峻挑战。为此,提出一种基于变时段设计的多目标差分进化算法。首先按各时段负荷特征构建风/光/... 在高比例新能源馈入的新型电力系统中,新能源出力的不确定性导致火电难以满足调度计划的精度需求,风/光/火/储系统的经济调度求解算法面临严峻挑战。为此,提出一种基于变时段设计的多目标差分进化算法。首先按各时段负荷特征构建风/光/火/储系统的变时段日前调度规则。进而以系统运行经济成本与污染排放量为目标,基于多目标差分进化算法求解变时段系统日前调度模型的Pareto解集。最后,用IEEE 39节点系统进行测试。结果表明在风、光、储与火电的约束条件均符合校验的情形下,相较于其他算法,该方法使计算结果更加优化,火电机组出力跟踪调度计划效果显著提高,验证了所提方法的有效性。 展开更多
关键词 风/光/火/储系统 变时段设计 日前调度计划 多目标差分进化算法 优化调度
在线阅读 下载PDF
领导者引导与支配解进化的多目标矮猫鼬算法 被引量:5
15
作者 赵世杰 张红易 马世林 《计算机科学与探索》 CSCD 北大核心 2024年第2期403-424,共22页
面对现实中日益复杂的多目标优化问题,需要发展新型多目标优化算法应对挑战。提出一种基于领导者引导与支配解动态缩减进化的多目标矮猫鼬优化算法(MODMO)。领导者引导机制通过引入动态权衡因子以调控侦察猫鼬探寻土丘的搜索半径,同时... 面对现实中日益复杂的多目标优化问题,需要发展新型多目标优化算法应对挑战。提出一种基于领导者引导与支配解动态缩减进化的多目标矮猫鼬优化算法(MODMO)。领导者引导机制通过引入动态权衡因子以调控侦察猫鼬探寻土丘的搜索半径,同时以非劣解集构建外部存档并根据非支配排序层级确定出领导者,进而引导侦察猫鼬向多目标前沿面推进以改善算法的收敛性;支配解动态缩减进化策略是为克服非劣解外部存档维护过程中的解冗余问题而构建,其以支配关系和拥挤距离动态筛选支配解并存入外部存档,以支配解信息融入种群进化实现多目标潜在前沿的挖掘并增强算法的多样性。在ZDT、DTLZ与WFG基准函数上,与5种代表性比较算法的实验结果表明MODMO算法在收敛性与多样性上均具有显著优势。 展开更多
关键词 多目标优化 矮猫鼬优化算法 领导者引导机制 外部存档 支配解动态缩减进化策略
在线阅读 下载PDF
基于自适应采样策略的模糊分类代理辅助进化算法
16
作者 李二超 吴煜 《郑州大学学报(工学版)》 北大核心 2025年第2期51-59,共9页
针对基于分类代理辅助进化算法模型管理效率不高和如何有效降低真实函数评估次数的问题,提出了一种基于自适应采样策略的模糊分类代理辅助进化算法。首先,算法通过帕累托支配关系筛选样本来构造代理模型;其次,采用基于转移的密度估计策... 针对基于分类代理辅助进化算法模型管理效率不高和如何有效降低真实函数评估次数的问题,提出了一种基于自适应采样策略的模糊分类代理辅助进化算法。首先,算法通过帕累托支配关系筛选样本来构造代理模型;其次,采用基于转移的密度估计策略提高选择压力,兼顾收敛性与多样性,同时利用十折交叉验证得到精度信息用来划分状态;最后,设计了一种自适应模型管理策略,其考虑当前种群的收敛性、多样性和不确定性,并根据不同精度状态采用有针对性的采样方式,该算法能够在保证整体性能的前提下,合理减少真实评估次数。为验证所提算法性能,将该算法与其他4种算法在MaF、WFG测试集和汽车侧面碰撞设计与驾驶室设计的实际工程问题上进行了分析对比实验,实验结果表明:所提算法在有限次评估条件下,在解决昂贵多目标优化问题时具有较好的竞争力。 展开更多
关键词 代理辅助进化算法 代理模型 昂贵多目标优化问题 模型管理
在线阅读 下载PDF
向量角选择和指标删除的高维多目标进化算法
17
作者 顾清华 骆家乐 李学现 《计算机科学与探索》 CSCD 北大核心 2024年第2期425-438,共14页
针对进化算法求解高维多目标优化问题平衡收敛性和多样性所面临的挑战,提出了向量角选择和指标删除的高维多目标进化算法(MOEA/AS-ID)。该算法在环境选择过程中设计了一种包含两种策略的协作机制逐一删除收敛性和多样性差的解以保留精... 针对进化算法求解高维多目标优化问题平衡收敛性和多样性所面临的挑战,提出了向量角选择和指标删除的高维多目标进化算法(MOEA/AS-ID)。该算法在环境选择过程中设计了一种包含两种策略的协作机制逐一删除收敛性和多样性差的解以保留精英个体参与下一代的进化。前者基于向量角的选择策略用于选择一对在目标空间具有相似搜索方向的解,后者基于指标的删除策略采用同时兼顾个体收敛性和分布性的I_(SDE)^(+)指标比较被选择的这一对解,然后删除具有较小指标值的解,进而促使种群朝各个方向收敛到帕累托最优前沿,最终平衡解集的收敛性和多样性。在包含各种特征的3组标准测试系列问题DTLZ、SDTLZ、MaF上,MOEA/AS-ID与近年提出的6个涵盖了当前各种类型的高维多目标进化算法执行了广泛的对比仿真实验和数值结果分析。仿真结果和数值分析表明所提算法MOEA/AS-ID求解各种特征的高维多目标优化问题平衡收敛性和多样性的能力具有较强的竞争力。 展开更多
关键词 进化算法 高维多目标优化 向量角选择 指标删除 收敛性 多样性
在线阅读 下载PDF
基于梯度搜索与进化机制的多目标混合算法 被引量:3
18
作者 诸才承 唐智礼 +1 位作者 赵鑫 曹凡 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第6期1940-1951,共12页
多目标进化算法(MOEA)因其良好的全局探索能力备受关注,但其在最优值附近的局部搜索能力却相对较弱,且对于具有大规模决策变量的优化问题,MOEA所需的种群数量与迭代次数都十分庞大,优化效率较低。基于梯度的优化算法能够很好地克服这些... 多目标进化算法(MOEA)因其良好的全局探索能力备受关注,但其在最优值附近的局部搜索能力却相对较弱,且对于具有大规模决策变量的优化问题,MOEA所需的种群数量与迭代次数都十分庞大,优化效率较低。基于梯度的优化算法能够很好地克服这些问题,但梯度搜索算法很难应用于多目标问题(MOPs)。在加权平均梯度的基础上引入随机权函数,发展多目标梯度算子,将其与基于参考点的第三代非支配排序遗传算法(NSGA-Ⅲ)结合,发展了多目标梯度优化算法(MOGBA)和多目标混合进化算法(HMOEA)。HMOEA在保留NSGA-Ⅲ良好的全局探索能力的同时,极大地增强了局部搜索能力。数值实验表明:HMOEA对于各种Pareto阵面都具有优秀的捕获能力,与典型的多目标算法相比效率提升了5~10倍。进一步将HMOEA应用于RAE2822翼型的多目标气动优化问题中,得到了理想的Pareto前沿,表明HMOEA是一种高效的优化算法,在气动优化设计中具有潜在的应用价值。 展开更多
关键词 多目标优化 混合算法 进化算法 梯度方法 气动优化
在线阅读 下载PDF
基于多目标进化算法的反应堆辐射屏蔽优化方法研究 被引量:2
19
作者 刘程伟 陈珍平 +4 位作者 杨超 张华健 孙爱扣 雷济充 于涛 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第6期1261-1270,共10页
新型核能与核动力装置的发展对辐射屏蔽设计方法提出了更高要求。面对空间堆、船用堆等装置的小型化、轻量化设计需求,传统辐射屏蔽多目标优化方法存在优化目标少、优化参数单一、全局性差等缺陷,难以满足辐射屏蔽智能设计的需求。本文... 新型核能与核动力装置的发展对辐射屏蔽设计方法提出了更高要求。面对空间堆、船用堆等装置的小型化、轻量化设计需求,传统辐射屏蔽多目标优化方法存在优化目标少、优化参数单一、全局性差等缺陷,难以满足辐射屏蔽智能设计的需求。本文基于第三代非支配排序遗传算法和改进多目标人工蜂群算法开展面向反应堆屏蔽层重量、体积和特定区域辐射剂量等多目标约束条件下的辐射屏蔽优化方法研究,并对各算法的优化性能、优化方案进行对比分析。结果表明,本文方法相较于传统屏蔽智能设计方法展现了更好的优化性能,并在实际工程问题中体现了可靠性,可为辐射屏蔽设计优化提供新思路。 展开更多
关键词 辐射屏蔽设计 多目标优化 进化算法 核反应堆
在线阅读 下载PDF
面向高维多目标优化的双阶段双种群进化算法 被引量:4
20
作者 曹嘉乐 杨磊 +2 位作者 田井林 李华德 李康顺 《计算机工程与应用》 CSCD 北大核心 2024年第9期159-171,共13页
随着目标维度的上升,高维多目标优化问题的帕累托前沿越来越复杂,传统的基于分解的高维多目标进化算法难以挑选出多样性和收敛性良好的种群。针对以上问题提出了一种面向高维多目标优化的双阶段双种群进化算法。该算法将进化过程划分为... 随着目标维度的上升,高维多目标优化问题的帕累托前沿越来越复杂,传统的基于分解的高维多目标进化算法难以挑选出多样性和收敛性良好的种群。针对以上问题提出了一种面向高维多目标优化的双阶段双种群进化算法。该算法将进化过程划分为两个阶段,在第一阶段判断帕累托前沿的形状是否规则,而在第二阶段则根据帕累前沿的形状选择是否对权重向量进行调整,以保证种群在规则及不规则帕累托前沿上都能获得良好的多样性。为了对权重向量进行调整且不影响算法的收敛性,该算法使用了两个种群进行进化,一个主种群正常进化,另一个辅种群作为权重向量。为了在不规则的帕累托前沿上获得一组适应种群分布的权重向量,引入了自然界中能量平衡的概念收集了多样性良好的辅种群作为权重向量。将提出的算法与其他算法在3-10目标的测试问题上进行比较。实验结果表明,提出的算法在大多数测试问题上性能优于比较的算法。 展开更多
关键词 高维多目标优化 进化算法 双阶段 双种群 权重向量 能量平衡
在线阅读 下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部