多目标进化优化是求解多目标优化问题的可行方法.但是,由于没有准确感知并充分利用问题的Pareto前沿,已有方法难以高效求解复杂的多目标优化问题.本文提出一种基于在线感知Pareto前沿划分目标空间的多目标进化优化方法,以利用感知的结果...多目标进化优化是求解多目标优化问题的可行方法.但是,由于没有准确感知并充分利用问题的Pareto前沿,已有方法难以高效求解复杂的多目标优化问题.本文提出一种基于在线感知Pareto前沿划分目标空间的多目标进化优化方法,以利用感知的结果,采用有针对性的进化优化方法求解多目标优化问题.首先,根据个体之间的拥挤距离与给定阈值的关系感知优化问题的Pareto前沿上的间断点,并基于此将目标空间划分为若干子空间;然后,在每一子空间中采用MOEA/D(Multi-objective evolutionary algorithm based on decomposition)得到一个外部保存集;最后,基于所有外部保存集生成问题的Pareto解集.将提出的方法应用于15个基准数值函数优化问题,并与NSGA-Ⅱ、RPEA、MOEA/D、MOEA/D-PBI、MOEA/D-STM和MOEA/D-ACD等比较.结果表明,提出的方法能够产生收敛和分布性更优的Pareto解集,是一种非常有竞争力的方法.展开更多
实数编码的多目标进化算法常使用模拟二进制交叉(simulated binary crossover,称SBX)算子.通过对SBX以及进化策略中变异算子进行对比分析,并引入进化策略中的离散重组算子,提出了一种正态分布交叉(normal distribution crossover,称NDX...实数编码的多目标进化算法常使用模拟二进制交叉(simulated binary crossover,称SBX)算子.通过对SBX以及进化策略中变异算子进行对比分析,并引入进化策略中的离散重组算子,提出了一种正态分布交叉(normal distribution crossover,称NDX)算子.首先在一维搜索空间实例中对NDX与SBX算子进行比较和分析,然后将NDX算子应用于Deb等人提出的稳态多目标进化算法ε-MOEA(ε-dominance based multiobjective evolutionary algorithm)中.采用NDX算子的ε-MOEA(记为ε-MOEA/NDX)算法在多目标优化标准测试集ZDT和DTLZ的10个函数上进行了实验比较.实验结果和分析表明,采用NDX的ε-MOEA所求得的Pareto最优解集质量明显优于经典算法ε-MOEA/SBX和NSGA-Ⅱ.展开更多
文摘多目标进化优化是求解多目标优化问题的可行方法.但是,由于没有准确感知并充分利用问题的Pareto前沿,已有方法难以高效求解复杂的多目标优化问题.本文提出一种基于在线感知Pareto前沿划分目标空间的多目标进化优化方法,以利用感知的结果,采用有针对性的进化优化方法求解多目标优化问题.首先,根据个体之间的拥挤距离与给定阈值的关系感知优化问题的Pareto前沿上的间断点,并基于此将目标空间划分为若干子空间;然后,在每一子空间中采用MOEA/D(Multi-objective evolutionary algorithm based on decomposition)得到一个外部保存集;最后,基于所有外部保存集生成问题的Pareto解集.将提出的方法应用于15个基准数值函数优化问题,并与NSGA-Ⅱ、RPEA、MOEA/D、MOEA/D-PBI、MOEA/D-STM和MOEA/D-ACD等比较.结果表明,提出的方法能够产生收敛和分布性更优的Pareto解集,是一种非常有竞争力的方法.
文摘实数编码的多目标进化算法常使用模拟二进制交叉(simulated binary crossover,称SBX)算子.通过对SBX以及进化策略中变异算子进行对比分析,并引入进化策略中的离散重组算子,提出了一种正态分布交叉(normal distribution crossover,称NDX)算子.首先在一维搜索空间实例中对NDX与SBX算子进行比较和分析,然后将NDX算子应用于Deb等人提出的稳态多目标进化算法ε-MOEA(ε-dominance based multiobjective evolutionary algorithm)中.采用NDX算子的ε-MOEA(记为ε-MOEA/NDX)算法在多目标优化标准测试集ZDT和DTLZ的10个函数上进行了实验比较.实验结果和分析表明,采用NDX的ε-MOEA所求得的Pareto最优解集质量明显优于经典算法ε-MOEA/SBX和NSGA-Ⅱ.