The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional...The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional to the distance that a robot has to move to visit the target. The team objective is to minimize the average path cost of target over all targets. Finding an optimal allocation is strongly NP-hard. The proposed algorithm can produce a near-optimal solution to it. The allocation can be cast in terms of a multi-round single-item auction by which robots bid on targets. In each auction round, one target is assigned to a robot that produces the lowest path cost of the target. The allocated targets form a forest where each tree corresponds a robot’s exploring targets set. Each robot constructs an exploring path through depth-first search in its target tree. The time complexity of the proposed algorithm is polynomial. Simulation experiments show that the allocating method is valid.展开更多
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki...Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.展开更多
基金Project(A1420060159) supported by the National Basic Research of China projects(60234030 60404021) supported bythe National Natural Science Foundation of China
文摘The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional to the distance that a robot has to move to visit the target. The team objective is to minimize the average path cost of target over all targets. Finding an optimal allocation is strongly NP-hard. The proposed algorithm can produce a near-optimal solution to it. The allocation can be cast in terms of a multi-round single-item auction by which robots bid on targets. In each auction round, one target is assigned to a robot that produces the lowest path cost of the target. The allocated targets form a forest where each tree corresponds a robot’s exploring targets set. Each robot constructs an exploring path through depth-first search in its target tree. The time complexity of the proposed algorithm is polynomial. Simulation experiments show that the allocating method is valid.
基金Project(61273138)supported by the National Natural Science Foundation of ChinaProject(14JCZDJC39300)supported by the Key Fund of Tianjin,China
文摘Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system.