针对复杂装备体系(Complex Equipment System-of-systems,CES)优化设计中指标变量多、仿真依赖性强、易陷入局部最优的问题,提出一种基于正向解析式和多目标博弈理论(Multi-Objective Game Theory,MOGT)优化算法的CES优化设计方法。为提...针对复杂装备体系(Complex Equipment System-of-systems,CES)优化设计中指标变量多、仿真依赖性强、易陷入局部最优的问题,提出一种基于正向解析式和多目标博弈理论(Multi-Objective Game Theory,MOGT)优化算法的CES优化设计方法。为提升CES优化设计的可解释性,构建任务级—能力级—装备级的评估指标体系;在此基础上,基于装备机理和效用函数表征装备评估指标与作战能力之间的正向映射关系,并利用相邻优属度熵权法计算各指标权重;通过正向解析式与约束条件建立多目标优化模型,并采用MOGT优化算法获得最佳优化结果。以某作战推演平台中防空攻防想定为例,开展算例评估与验证分析。研究结果表明,该方法能够实现CES中最优设计方案的求解,可显著提高设计效率和降低设计成本,为下一代装备发展论证、设计评估和作战试验提供了基础性工作。展开更多
在免疫多目标优化算法的基础上,引入了分布估计算法(EDA)对进化种群进行建模采样的思想,提出了一种求解复杂多目标优化问题的混合优化算法HIAEDA(hybrid immune algorithm with EDA for multi-objective optimization).HIAEDA的进化过...在免疫多目标优化算法的基础上,引入了分布估计算法(EDA)对进化种群进行建模采样的思想,提出了一种求解复杂多目标优化问题的混合优化算法HIAEDA(hybrid immune algorithm with EDA for multi-objective optimization).HIAEDA的进化过程混合了两种后代产生策略:一种是基于交叉变异的克隆选择算子,用于在父代种群周围进行局部搜索的同时开辟新的搜索区域;另一种是基于EDA的模型采样算子,用于学习多目标优化问题决策变量之间的相关性,提高算法求解复杂多目标优化问题的能力.在分析两种算子搜索行为的基础上,讨论了两者在功能上的互补性,并利用有限马尔可夫链的性质证明了HIAEDA算法的收敛性.对测试函数和实际工程问题的仿真实验结果表明,HIAEDA与NSGAII算法和基于EDA的进化多目标优化算法RM-MEDA相比,在收敛性和多样性方面均表现出明显优势,尤其是对于决策变量之间存在非线性关联的复杂多目标优化问题,优势更为突出.展开更多
文摘针对复杂装备体系(Complex Equipment System-of-systems,CES)优化设计中指标变量多、仿真依赖性强、易陷入局部最优的问题,提出一种基于正向解析式和多目标博弈理论(Multi-Objective Game Theory,MOGT)优化算法的CES优化设计方法。为提升CES优化设计的可解释性,构建任务级—能力级—装备级的评估指标体系;在此基础上,基于装备机理和效用函数表征装备评估指标与作战能力之间的正向映射关系,并利用相邻优属度熵权法计算各指标权重;通过正向解析式与约束条件建立多目标优化模型,并采用MOGT优化算法获得最佳优化结果。以某作战推演平台中防空攻防想定为例,开展算例评估与验证分析。研究结果表明,该方法能够实现CES中最优设计方案的求解,可显著提高设计效率和降低设计成本,为下一代装备发展论证、设计评估和作战试验提供了基础性工作。
文摘在免疫多目标优化算法的基础上,引入了分布估计算法(EDA)对进化种群进行建模采样的思想,提出了一种求解复杂多目标优化问题的混合优化算法HIAEDA(hybrid immune algorithm with EDA for multi-objective optimization).HIAEDA的进化过程混合了两种后代产生策略:一种是基于交叉变异的克隆选择算子,用于在父代种群周围进行局部搜索的同时开辟新的搜索区域;另一种是基于EDA的模型采样算子,用于学习多目标优化问题决策变量之间的相关性,提高算法求解复杂多目标优化问题的能力.在分析两种算子搜索行为的基础上,讨论了两者在功能上的互补性,并利用有限马尔可夫链的性质证明了HIAEDA算法的收敛性.对测试函数和实际工程问题的仿真实验结果表明,HIAEDA与NSGAII算法和基于EDA的进化多目标优化算法RM-MEDA相比,在收敛性和多样性方面均表现出明显优势,尤其是对于决策变量之间存在非线性关联的复杂多目标优化问题,优势更为突出.