为在预警监视系统中对多目标的检测、跟踪、识别过程进行统一处理,提出一种基于跳转马尔可夫系统模型高斯混合概率假设密度滤波(jump Markov system model Gaussian mixture probability hypothesis density filtering,JMS-GMPHDF)算法...为在预警监视系统中对多目标的检测、跟踪、识别过程进行统一处理,提出一种基于跳转马尔可夫系统模型高斯混合概率假设密度滤波(jump Markov system model Gaussian mixture probability hypothesis density filtering,JMS-GMPHDF)算法的雷达、电子支援措施(electronic support measures,ESM)综合多目标检测、跟踪与识别方法。该方法首先根据不同类别目标设计各自的多目标多模型高斯混合概率假设密度滤波器,并在各滤波器处理过程中同时对高斯项进行编号;然后,根据目标速度与加速度模型信息进行高斯项综合与类别判决,同时根据ESM测量信息进行型号判决;最后,通过航迹综合管理,形成具有运动状态信息以及类别、型号、航迹编号信息的确定航迹。仿真实验验证了该方法能够有效综合雷达、ESM测量数据,在进行多目标检测、跟踪的同时进行正确的类别、型号判决,并形成确定航迹。展开更多
南京航空航天大学(Nanjing University of Aeronautics and Astronautics,NUAA)雷达探测与成像团队利用自主研发的无人机载微小型合成孔径雷达(Synthetic aperture radar,SAR)系统针对不同型号的坦克、装甲车和战机等十余类典型军事目...南京航空航天大学(Nanjing University of Aeronautics and Astronautics,NUAA)雷达探测与成像团队利用自主研发的无人机载微小型合成孔径雷达(Synthetic aperture radar,SAR)系统针对不同型号的坦克、装甲车和战机等十余类典型军事目标构建了圆周SAR数据集。通过对多次外场试验数据的高精度成像处理,在多俯仰角单基圆周SAR图像数据集的基础上,扩展了不同双基角组合的双基圆周SAR图像数据集。基于该数据集,本文结合团队在SAR图像目标检测和识别方法及应用方面的研究成果,对基于深度学习的SAR目标检测识别技术进行了回顾和综述,对比了不同神经网络模型在南航无人机载圆周SAR数据集上的检测和识别性能。具体地,在目标检测方面,利用SAR图像固有属性获得目标位置信息并结合单阶段轻量级检测算法,提出利用信息分布规律并结合全局注意力机制捕捉小目标位置信息的检测算法,以提高复杂背景下的小目标检测准确率和效率。在目标识别方面,在通过SAR图像先验信息抑制干扰噪声的基础上,提出利用SAR目标多视角信息联合Transformer的目标识别算法,通过设计视角正则化项以约束多视角之间的关联性从而实现不同视角间的特征融合,提高SAR小目标识别的准确率。从无人机载微型SAR系统对地面目标进行实时检测和识别的实际需求出发,本文还探讨了轻量化检测和识别网络在数字信号处理(Digital signal processing,DSP)平台上的部署方案,同时展示了初步试验结果。最后,本文展望了SAR目标智能检测和识别领域面临的挑战和发展趋势。展开更多
针对暗环境动态特征轮廓模糊、盲区遮挡情况,高效准确地检测跟踪动态目标特征,对灾害救援、搜寻跟踪具有实际意义。为实现暗环境下模糊轮廓特征的有效检测跟踪,提出一种时空关联机制的红外目标实时检测深度学习网络(Spatial Local Dynam...针对暗环境动态特征轮廓模糊、盲区遮挡情况,高效准确地检测跟踪动态目标特征,对灾害救援、搜寻跟踪具有实际意义。为实现暗环境下模糊轮廓特征的有效检测跟踪,提出一种时空关联机制的红外目标实时检测深度学习网络(Spatial Local Dynamic You Only Look Once Version 8,SLD-YOLOv8),设计非局部自适应Non-local模块和空间通道卷积关联模块,对原YOLOv8网络的瓶颈层Bottleneck CSP进行优化。为有效提取深层空间多尺度表征信息,增加用于小目标检测的160×160检测层和动态检测头,较好地提升暗环境中目标跟踪的边界回归性能,并实时有效地推理出目标特征的相对深度位置信息。实验结果表明,改进后的红外目标检测算法对暗环境下的动态特征检测具有较好的鲁棒性和准确性,其平均精度评估指标mAP_0.5和mAP_0.5:0.95比原模型提高了5.6%和4.5%,证明了新算法对暗环境目标跟踪的有效性。展开更多
目标跟踪作为图像处理领域的重要组成部分,广泛应用于智能视频监控、军事侦察等领域。但在面对物体形变以及遮挡等复杂应用场景时,相关滤波算法由于缺乏目标和背景判别区分以及遮挡状态判断等策略,存在跟错目标、缓慢漂移到背景等现象,...目标跟踪作为图像处理领域的重要组成部分,广泛应用于智能视频监控、军事侦察等领域。但在面对物体形变以及遮挡等复杂应用场景时,相关滤波算法由于缺乏目标和背景判别区分以及遮挡状态判断等策略,存在跟错目标、缓慢漂移到背景等现象,在遮挡后目标重新出现时,缺乏重检测机制,这些问题导致了跟踪性能在实际工程中大幅下降。针对以上问题进行改进设计,首先在跟踪过程中,使用网络优化器更新多层深度特征提取网络,优化损失函数提高目标与背景的判别能力;其次,采用多重检测抗遮挡优化机制,确定跟踪器状态更新机制;最后,基于深度学习进行检测跟踪识别一体化设计,实现跟踪前典型目标的自动捕获,目标受遮挡后重新出现时实现对典型目标的重新捕获定位。在实验分析中,分别从跟踪精度、可视化定量损失以及算法速度等方面进行了性能验证。实测数据显示,本文采用的方法在以上方面性能表现良好,优于改进前的ECO(efficientconvolution operators for tracking)算法。展开更多
文摘为在预警监视系统中对多目标的检测、跟踪、识别过程进行统一处理,提出一种基于跳转马尔可夫系统模型高斯混合概率假设密度滤波(jump Markov system model Gaussian mixture probability hypothesis density filtering,JMS-GMPHDF)算法的雷达、电子支援措施(electronic support measures,ESM)综合多目标检测、跟踪与识别方法。该方法首先根据不同类别目标设计各自的多目标多模型高斯混合概率假设密度滤波器,并在各滤波器处理过程中同时对高斯项进行编号;然后,根据目标速度与加速度模型信息进行高斯项综合与类别判决,同时根据ESM测量信息进行型号判决;最后,通过航迹综合管理,形成具有运动状态信息以及类别、型号、航迹编号信息的确定航迹。仿真实验验证了该方法能够有效综合雷达、ESM测量数据,在进行多目标检测、跟踪的同时进行正确的类别、型号判决,并形成确定航迹。
文摘南京航空航天大学(Nanjing University of Aeronautics and Astronautics,NUAA)雷达探测与成像团队利用自主研发的无人机载微小型合成孔径雷达(Synthetic aperture radar,SAR)系统针对不同型号的坦克、装甲车和战机等十余类典型军事目标构建了圆周SAR数据集。通过对多次外场试验数据的高精度成像处理,在多俯仰角单基圆周SAR图像数据集的基础上,扩展了不同双基角组合的双基圆周SAR图像数据集。基于该数据集,本文结合团队在SAR图像目标检测和识别方法及应用方面的研究成果,对基于深度学习的SAR目标检测识别技术进行了回顾和综述,对比了不同神经网络模型在南航无人机载圆周SAR数据集上的检测和识别性能。具体地,在目标检测方面,利用SAR图像固有属性获得目标位置信息并结合单阶段轻量级检测算法,提出利用信息分布规律并结合全局注意力机制捕捉小目标位置信息的检测算法,以提高复杂背景下的小目标检测准确率和效率。在目标识别方面,在通过SAR图像先验信息抑制干扰噪声的基础上,提出利用SAR目标多视角信息联合Transformer的目标识别算法,通过设计视角正则化项以约束多视角之间的关联性从而实现不同视角间的特征融合,提高SAR小目标识别的准确率。从无人机载微型SAR系统对地面目标进行实时检测和识别的实际需求出发,本文还探讨了轻量化检测和识别网络在数字信号处理(Digital signal processing,DSP)平台上的部署方案,同时展示了初步试验结果。最后,本文展望了SAR目标智能检测和识别领域面临的挑战和发展趋势。
文摘针对暗环境动态特征轮廓模糊、盲区遮挡情况,高效准确地检测跟踪动态目标特征,对灾害救援、搜寻跟踪具有实际意义。为实现暗环境下模糊轮廓特征的有效检测跟踪,提出一种时空关联机制的红外目标实时检测深度学习网络(Spatial Local Dynamic You Only Look Once Version 8,SLD-YOLOv8),设计非局部自适应Non-local模块和空间通道卷积关联模块,对原YOLOv8网络的瓶颈层Bottleneck CSP进行优化。为有效提取深层空间多尺度表征信息,增加用于小目标检测的160×160检测层和动态检测头,较好地提升暗环境中目标跟踪的边界回归性能,并实时有效地推理出目标特征的相对深度位置信息。实验结果表明,改进后的红外目标检测算法对暗环境下的动态特征检测具有较好的鲁棒性和准确性,其平均精度评估指标mAP_0.5和mAP_0.5:0.95比原模型提高了5.6%和4.5%,证明了新算法对暗环境目标跟踪的有效性。
文摘目标跟踪作为图像处理领域的重要组成部分,广泛应用于智能视频监控、军事侦察等领域。但在面对物体形变以及遮挡等复杂应用场景时,相关滤波算法由于缺乏目标和背景判别区分以及遮挡状态判断等策略,存在跟错目标、缓慢漂移到背景等现象,在遮挡后目标重新出现时,缺乏重检测机制,这些问题导致了跟踪性能在实际工程中大幅下降。针对以上问题进行改进设计,首先在跟踪过程中,使用网络优化器更新多层深度特征提取网络,优化损失函数提高目标与背景的判别能力;其次,采用多重检测抗遮挡优化机制,确定跟踪器状态更新机制;最后,基于深度学习进行检测跟踪识别一体化设计,实现跟踪前典型目标的自动捕获,目标受遮挡后重新出现时实现对典型目标的重新捕获定位。在实验分析中,分别从跟踪精度、可视化定量损失以及算法速度等方面进行了性能验证。实测数据显示,本文采用的方法在以上方面性能表现良好,优于改进前的ECO(efficientconvolution operators for tracking)算法。