高频直流变压器(high-frequency DC transformer,HDCT)是直流电网的关键设备。为了满足中高压直流电网母线互联、电压变换、功率双向传输和电气隔离的需求,两端皆为模块化多电平变换器(modularmultilevel converter,MMC)结构的模块化多...高频直流变压器(high-frequency DC transformer,HDCT)是直流电网的关键设备。为了满足中高压直流电网母线互联、电压变换、功率双向传输和电气隔离的需求,两端皆为模块化多电平变换器(modularmultilevel converter,MMC)结构的模块化多电平高频直流变压器(modular multilevel DC transformer,M2DCT)尤受关注。目前,移相控制是提高M2DCT性能的有效方法之一,而现有的移相控制方法主要优化M2DCT的单一特性。因此,为了同时降低电流应力,最小化功率损耗,改善软开关特性,实现M2DCT性能的多目标综合优化,提出了一种基于多目标性能优化的双相移(dual-phase-shift,DPS)控制策略。建立M2DCT电流应力,功率损耗和软开关特性的数学模型,提出多目标性能优化DPS的控制策略。通过M2DCT样机实验结果,验证了所提策略的有效性和优越性。展开更多
The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-obj...The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-objective genetic algorithm (GA) was designed. Based on the model of system, the quantitative formula of the road feel, sensitivity, and operation stability of the steering were induced. Considering the road feel and sensitivity of steering as optimization objectives, and the operation stability of steering as constraint, the multi-objective GA was proposed and the system parameters were optimized. The simulation results show that the system optimized by multi-objective genetic algorithm has better road feel, steering sensibility and steering stability. The energy of steering road feel after optimization is 1.44 times larger than the one before optimization, and the energy of portability after optimization is 0.4 times larger than the one before optimization. The ground test was conducted in order to verify the feasibility of simulation results, and it is shown that the pure electric bus equipped with the recirculating ball-type EPS system can provide better road feel and better steering portability for the drivers, thus the optimization methods can provide a theoretical basis for the design and optimization of the recirculating ball-type EPS system.展开更多
文摘高频直流变压器(high-frequency DC transformer,HDCT)是直流电网的关键设备。为了满足中高压直流电网母线互联、电压变换、功率双向传输和电气隔离的需求,两端皆为模块化多电平变换器(modularmultilevel converter,MMC)结构的模块化多电平高频直流变压器(modular multilevel DC transformer,M2DCT)尤受关注。目前,移相控制是提高M2DCT性能的有效方法之一,而现有的移相控制方法主要优化M2DCT的单一特性。因此,为了同时降低电流应力,最小化功率损耗,改善软开关特性,实现M2DCT性能的多目标综合优化,提出了一种基于多目标性能优化的双相移(dual-phase-shift,DPS)控制策略。建立M2DCT电流应力,功率损耗和软开关特性的数学模型,提出多目标性能优化DPS的控制策略。通过M2DCT样机实验结果,验证了所提策略的有效性和优越性。
基金Projects(51005115, 51005248) supported by the National Natural Science Foundation of ChinaProject(SKLMT-KFKT-201105)supported by the Visiting Scholar Foundation of State Key Laboratory of Mechanical Transmission in Chongqing University, ChinaProject(QC201101) supported by Visiting Scholar Foundation of the Automobile Engineering Key Laboratory of Jiangsu Province, China
文摘The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-objective genetic algorithm (GA) was designed. Based on the model of system, the quantitative formula of the road feel, sensitivity, and operation stability of the steering were induced. Considering the road feel and sensitivity of steering as optimization objectives, and the operation stability of steering as constraint, the multi-objective GA was proposed and the system parameters were optimized. The simulation results show that the system optimized by multi-objective genetic algorithm has better road feel, steering sensibility and steering stability. The energy of steering road feel after optimization is 1.44 times larger than the one before optimization, and the energy of portability after optimization is 0.4 times larger than the one before optimization. The ground test was conducted in order to verify the feasibility of simulation results, and it is shown that the pure electric bus equipped with the recirculating ball-type EPS system can provide better road feel and better steering portability for the drivers, thus the optimization methods can provide a theoretical basis for the design and optimization of the recirculating ball-type EPS system.