期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
联合边界生成的多目标学习的嵌套命名实体识别
1
作者 徐章杰 陈艳平 +2 位作者 扈应 黄瑞章 秦永彬 《计算机应用》 北大核心 2025年第7期2229-2236,共8页
命名实体识别(NER)旨在从非结构化文本中识别预定义的实体类型。基于跨度的NER方法通过枚举所有可能的跨度进行分类,然而文本中相邻的跨度共享上下文语义,会导致跨度之间的边界语义信息模糊,从而使模型难以获取跨度间的依赖信息。针对... 命名实体识别(NER)旨在从非结构化文本中识别预定义的实体类型。基于跨度的NER方法通过枚举所有可能的跨度进行分类,然而文本中相邻的跨度共享上下文语义,会导致跨度之间的边界语义信息模糊,从而使模型难以获取跨度间的依赖信息。针对跨度间边界语义信息模糊的问题,提出一种联合边界生成的多目标学习NER模型。该模型通过联合NER任务和边界生成任务,以多目标学习的方式进行共同训练。其中:使用边界生成任务作为辅助任务引导模型网络关注跨度的边界信息,以增强跨度的边界语义,进而提升NER的性能。在ACE2004、ACE2005和GENIA数据集上进行测试,所提模型的F1值分别达到了87.83%、86.90%和81.65%,实验结果充分验证了该模型在不同数据集上的有效性,也进一步验证了该模型在命名实体识别任务中的优越性能。 展开更多
关键词 命名实体识别 跨度分类 多目标学习 边界生成 神经网络
在线阅读 下载PDF
基于改进多目标蝗虫算法的压缩机叶轮参数优化研究
2
作者 任云鹏 李臻志 +4 位作者 宋方 李安帅 杨强辉 刘佳豪 邵佳康 《机电工程》 北大核心 2025年第5期856-865,共10页
针对常用基本算法在模型复杂的叶轮部件优化设计上寻优效果不佳等问题,提出了一种融合柯西变异和反向学习的改进多目标蝗虫优化算法(COMOGOA),对离心压缩机叶轮进行了参数优化设计。首先,分析了基本蝗虫优化算法(GOA)及多目标优化问题原... 针对常用基本算法在模型复杂的叶轮部件优化设计上寻优效果不佳等问题,提出了一种融合柯西变异和反向学习的改进多目标蝗虫优化算法(COMOGOA),对离心压缩机叶轮进行了参数优化设计。首先,分析了基本蝗虫优化算法(GOA)及多目标优化问题原理,对多目标蝗虫优化算法(MOGOA)进行了改进,融合了柯西变异和反向学习改进策略,并利用测试函数与常用优化算法对比验证了其性能;然后,以离心压缩机叶轮部件为研究对象,对其建立了理论数值模型,利用改进的COMOGOA对模型设计参数进行了寻优,并与其他优化算法进行了对比分析;最后,在考虑了数值仿真、模型假设等因素带来的误差影响情况下,利用ANSYS-CFX数值验证了仿真分析,结合叶轮气动特性及原因进一步验证了优化效果。研究结果表明:优化叶轮后,设计工况下的压缩比显著提升了4.370%,等熵效率增强了1.529%,叶轮得到了改善,从而提升了压缩机的整体性能。COMOGOA算法在叶轮部件复杂模型的优化设计中有着更为出色的寻优效果,也为此类复杂部件优化设计提供了合理参考,具有一定的工程应用价值。 展开更多
关键词 离心式压缩机 参数优化算法 融合柯西变异和反向学习的改进多目标蝗虫优化算法 ANSYS-CFX Cubic混沌模型 随机权重策略
在线阅读 下载PDF
基于多目标级联深度学习的无砟轨道板表面裂缝测量 被引量:4
3
作者 王卫东 吴铮 +6 位作者 邱实 彭俊 胡文博 伍定泽 王劲 冉志发 袁啸 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第9期3592-3603,共12页
轨道板劣化严重程度判识是工务养维的重要基础,而裂缝识别与宽度的精确测量是判识劣化程度的重要依据。基于传统机器视觉的轨道板裂缝判识易漏检、错检,复杂背景条件下检测精度较低,计算成本较高。现有深度学习方案虽然提升了检测精度,... 轨道板劣化严重程度判识是工务养维的重要基础,而裂缝识别与宽度的精确测量是判识劣化程度的重要依据。基于传统机器视觉的轨道板裂缝判识易漏检、错检,复杂背景条件下检测精度较低,计算成本较高。现有深度学习方案虽然提升了检测精度,但存在单一模型处理效率低,多裂缝目标分割粗糙等问题。本文提出一种基于深度学习的多目标级联算法,通过图像分类网络、实例分割网络和正交投影法的级联处理和特征传递,实现针对高速铁路无砟轨道板裂缝的精细化测量。该算法首先基于图像分类网络快速筛选巡检数据并捕获含裂缝图像;然后基于实例分割网络从图像分类网络的输出中逐像素地分割出独立的裂缝目标的边界,并作为正交投影法的输入;最后基于正交投影法沿裂缝边界提取单像素骨架及轮廓并计算连续宽度。研究结果表明:所提出的多目标级联算法的平均精度(AP)达到70.7%,相较于传统像素级的深度学习模型(Mask R-CNN)提升23.6%;综合处理效率达到63.44FPS,达到单一SOLOv2网络的3.6倍,有效克服了单一分割模型对健康图像的冗余计算。进一步地,多目标级联算法的裂缝宽度测量范围是传统人工测量方法的1.15倍且标准差更小,有效地解决了传统人工局部测量导致的宽度突变。此外,基于研究成果统计得到了无砟轨道板裂缝的宽度分布,可以作为裂缝的发展预测及轨道结构科学养维的潜在指标。 展开更多
关键词 铁道工程 无砟轨道板裂缝 多目标级联深度学习 正交投影 宽度测量
在线阅读 下载PDF
基于社会学习多目标粒子群优化的中长期负荷组合预测方法 被引量:4
4
作者 彭海洋 张英敏 《水电能源科学》 北大核心 2023年第4期216-220,共5页
精准的负荷预测对提高电网规划水平和准确指导投资具有重要意义。针对经验风险最小化的组合预测模型存在过拟合的缺点,提出了一种基于社会学习多目标粒子群优化算法,并利用偏最小二乘回归模型、支持向量回归模型、灰色预测GM(1,1)模型,... 精准的负荷预测对提高电网规划水平和准确指导投资具有重要意义。针对经验风险最小化的组合预测模型存在过拟合的缺点,提出了一种基于社会学习多目标粒子群优化算法,并利用偏最小二乘回归模型、支持向量回归模型、灰色预测GM(1,1)模型,引入权重的不确定性函数信息熵来表征期望风险,综合考虑经验风险和期望风险的组合预测模型。仿真结果表明,相比于单一预测模型和其他两种组合预测模型,所提方法具有更高的预测精度,社会学习多目标粒子群优化算法具有更强的全局搜索能力和优化性能。 展开更多
关键词 组合预测 社会学习多目标粒子群优化 偏最小二乘回归 支持向量回归 GM(1 1)
在线阅读 下载PDF
学习驱动的分布式异构混合流水车间批量流能效调度优化 被引量:1
5
作者 邵炜世 皮德常 邵仲世 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第6期1018-1028,共11页
本文研究了分布式异构混合流水车间批量流能效调度问题,其中每个工厂的加工效率不同,工件可以分割成若干子批进入加工系统.以最大完成时间和总能耗为优化目标,建立了混合整数规划模型.本文提出了一种学习驱动的多目标进化算法,包括学习... 本文研究了分布式异构混合流水车间批量流能效调度问题,其中每个工厂的加工效率不同,工件可以分割成若干子批进入加工系统.以最大完成时间和总能耗为优化目标,建立了混合整数规划模型.本文提出了一种学习驱动的多目标进化算法,包括学习驱动的全局搜索和局部搜索.引入Q学习作为学习引擎,以种群和非支配解集的评价作为环境反馈信号,通过不断的学习来动态指导搜索操作的选择;基于问题特征,设计了算法的状态集、动作集和奖励机制.Q学习的引入能够及时感知当前搜索的状态,减少搜索操作的盲目性,提高搜索的效率.通过对仿真数据集的测试,表明所提出算法能够有效地求解分布式异构混合流水车间批量流能效调度问题. 展开更多
关键词 分布式异构混合流水车间 批量流调度 学习驱动的多目标进化算法 整数规划 能效优化
在线阅读 下载PDF
Lacmia:抗混淆的多民族语言生成式摘要模型
6
作者 翁彧 罗皓予 +3 位作者 刘征 超木日力格 刘轩 董俊 《中文信息学报》 CSCD 北大核心 2024年第10期80-94,共15页
该文提出了一种针对中国多民族低资源语言生成式摘要模型Lacmia(Language-Anti-confusioned Chinese Minority Abstractive Summarization Model)。为了克服以往模型只能处理单一语言的限制,Lacmia采用了一种统一的生成式架构来执行不... 该文提出了一种针对中国多民族低资源语言生成式摘要模型Lacmia(Language-Anti-confusioned Chinese Minority Abstractive Summarization Model)。为了克服以往模型只能处理单一语言的限制,Lacmia采用了一种统一的生成式架构来执行不同民族语言的摘要生成任务。此外,为了解决以往模型在多民族低资源语言处理上的性能不足问题,该模型在框架中加入了语言信息嵌入模块。该文通过在损失函数中引入目标语言偏好性正则化项,有效减轻了多语言摘要中出现的语言混淆现象,从而提升摘要生成准确性和流畅度。广泛的实验表明,Lacmia在包括藏语和维吾尔语在内的多民族低资源语言摘要任务中,取得了卓越成绩。除了在ROUGE评价标准上实现了显著性能提升外,Lacmia在该文新提出的CINOScore和NLCR两项指标上均达到了最佳效果,验证了模型的有效性和先进性。 展开更多
关键词 生成式摘要 多语言预训练模型 低资源语言信息处理 多目标学习
在线阅读 下载PDF
端到端的嵌套命名实体识别方法研究 被引量:1
7
作者 邓力源 陈艳平 +4 位作者 武乐飞 秦永彬 黄瑞章 郑庆华 谭曦 《计算机工程与应用》 CSCD 北大核心 2023年第7期278-284,共7页
命名实体识别(NER)被视为自然语言处理中的一项基础性研究任务。受计算机视觉中单阶段(one-stage)目标检测算法启发,借鉴其算法思想并引入回归运算,提出有效识别嵌套命名实体的端到端方法。基于多目标学习框架,利用深度神经网络将句子... 命名实体识别(NER)被视为自然语言处理中的一项基础性研究任务。受计算机视觉中单阶段(one-stage)目标检测算法启发,借鉴其算法思想并引入回归运算,提出有效识别嵌套命名实体的端到端方法。基于多目标学习框架,利用深度神经网络将句子转换为文本特征图以回归预测嵌套实体边界,设计中心度方法抑制低质量边界。与多种方法在ACE2005中文数据集上进行对比实验。实验结果表明,该方法有效识别文本中的嵌套命名实体,且计算机视觉算法思想和边界回归机制在自然语言处理任务中取得理想的效果。 展开更多
关键词 嵌套命名实体 回归运算 中心度 端到端 多目标学习
在线阅读 下载PDF
安全驱动的城市交叉口自适应信号控制方法 被引量:1
8
作者 张功权 常方蓉 +1 位作者 金杰灵 黄合来 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第10期192-199,共8页
为提升城市交叉口的交通安全,提出1种安全驱动的自适应交通信号控制方法,以交通安全提升为主,同时优化通行效率和尾气排放。基于多目标深度强化学习,构建信号控制算法框架和双重决斗深度Q网络模型,使用离散交通状态编码定义当前交通状态... 为提升城市交叉口的交通安全,提出1种安全驱动的自适应交通信号控制方法,以交通安全提升为主,同时优化通行效率和尾气排放。基于多目标深度强化学习,构建信号控制算法框架和双重决斗深度Q网络模型,使用离散交通状态编码定义当前交通状态,利用卷积神经网络提取状态特征。针对不同奖励函数量纲无法统一的问题,设计综合奖励函数。基于长沙市交叉口场景和交通流数据,在SUMO搭建实验环境。研究结果表明:在单交叉口真实流量和模拟流量场景下,与现有交通信号控制相比,所提方法在交通冲突频率、车辆行车延误、CO_(2)排放等指标上都表现出更好的性能。研究结果可为城市交叉口安全优化提供参考。 展开更多
关键词 自适应交通信号控制 安全驱动 多目标强化学习 交通冲突
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部