多目标回归旨在使用一组共同的输入变量来预测多个连续变量,其现有方法可归类为问题转换法和算法适应法.它的主要挑战在于如何对输入与输出空间的复杂关系进行建模,以及如何有效利用目标间的相关性.然而,现有的问题转换法很少同时考虑...多目标回归旨在使用一组共同的输入变量来预测多个连续变量,其现有方法可归类为问题转换法和算法适应法.它的主要挑战在于如何对输入与输出空间的复杂关系进行建模,以及如何有效利用目标间的相关性.然而,现有的问题转换法很少同时考虑到这两方面.基于此,本文构建了一种问题转换法同时应对这两大挑战,提出了一种结合目标特定特征和目标相关性的多目标回归方法(Multi-Target Regression via Specific Features and Inter-Target Correlations,TSF-TC).TSF-TC通过对分箱后的样本进行聚类分析构建目标特定特征从而对输入与输出空间的复杂关系进行建模,通过有选择性地堆叠单目标预测值揭示目标间的相关性.本文使用TSF-TC在18个多目标回归数据集上与现有多目标回归方法进行了对比实验,实验结果充分表明了TSF-TC的优势.展开更多
多目标回归(Multi-target Regression,MTR)是一种同时预测多个相互关联的连续型输出目标的机器学习问题。在多目标回归中,多个输出目标共享同一个特征表示,其主要挑战在于如何有效地发掘和利用输出目标之间的关联,以提高所有输出目标的...多目标回归(Multi-target Regression,MTR)是一种同时预测多个相互关联的连续型输出目标的机器学习问题。在多目标回归中,多个输出目标共享同一个特征表示,其主要挑战在于如何有效地发掘和利用输出目标之间的关联,以提高所有输出目标的预测准确性。文中提出了一种基于超网络的多目标回归方法(Multi-target Regression Method based on Hypernetwork,MTR-HN)。首先采用k-means算法对每个连续型输出目标进行一维聚类,然后根据聚类结果将多目标回归问题转化成多类别多标签分类问题,最后采用超网络模型对多类别多标签分类问题进行建模,构建最终的多目标回归预测模型。MTR-HN方法的优点在于:1)对输出空间离散化,能够降低模型过拟合的风险;2)采用超网络模型,能更有效地对输出目标之间的关联进行建模。在18个多目标回归数据集上进行的对比实验表明,文中提出的MTR-HN方法能够取得比现有方法更高的预测准确性。展开更多
针对物体检测实时多目标回归算法中分别优化各四个位置参数,割裂了四个位置变量之间的关系,造成对物体的边框回归不够准确且训练不易收敛的问题,提出一种带检测评价函数(Intersection over Union,IoU)作为损失函数的实时多目标回归人脸...针对物体检测实时多目标回归算法中分别优化各四个位置参数,割裂了四个位置变量之间的关系,造成对物体的边框回归不够准确且训练不易收敛的问题,提出一种带检测评价函数(Intersection over Union,IoU)作为损失函数的实时多目标回归人脸检测算法。首先基于Redmond等提出实时多目标回归模型,采用该模型检测实时性的机制,然后融合了IoU函数作为位置参数的损失函数,将实时多目标回归模型中的四个独立位置参数整合成一个单元进行优化,避免了基础模型的缺陷。算法在人脸检测基准库FDDB上进行测试,实验结果表明:在人脸检测的有效性上优于主流的传统人脸检测算法,检测速度上领先于其他经典深度学习方法。提出的算法在检测人脸的有效性和检测速度两者之间取得了一个较好的平衡,为构建实用的人脸相关应用系统提供了参考价值。展开更多
文摘多目标回归旨在使用一组共同的输入变量来预测多个连续变量,其现有方法可归类为问题转换法和算法适应法.它的主要挑战在于如何对输入与输出空间的复杂关系进行建模,以及如何有效利用目标间的相关性.然而,现有的问题转换法很少同时考虑到这两方面.基于此,本文构建了一种问题转换法同时应对这两大挑战,提出了一种结合目标特定特征和目标相关性的多目标回归方法(Multi-Target Regression via Specific Features and Inter-Target Correlations,TSF-TC).TSF-TC通过对分箱后的样本进行聚类分析构建目标特定特征从而对输入与输出空间的复杂关系进行建模,通过有选择性地堆叠单目标预测值揭示目标间的相关性.本文使用TSF-TC在18个多目标回归数据集上与现有多目标回归方法进行了对比实验,实验结果充分表明了TSF-TC的优势.
文摘多目标回归(Multi-target Regression,MTR)是一种同时预测多个相互关联的连续型输出目标的机器学习问题。在多目标回归中,多个输出目标共享同一个特征表示,其主要挑战在于如何有效地发掘和利用输出目标之间的关联,以提高所有输出目标的预测准确性。文中提出了一种基于超网络的多目标回归方法(Multi-target Regression Method based on Hypernetwork,MTR-HN)。首先采用k-means算法对每个连续型输出目标进行一维聚类,然后根据聚类结果将多目标回归问题转化成多类别多标签分类问题,最后采用超网络模型对多类别多标签分类问题进行建模,构建最终的多目标回归预测模型。MTR-HN方法的优点在于:1)对输出空间离散化,能够降低模型过拟合的风险;2)采用超网络模型,能更有效地对输出目标之间的关联进行建模。在18个多目标回归数据集上进行的对比实验表明,文中提出的MTR-HN方法能够取得比现有方法更高的预测准确性。
文摘针对物体检测实时多目标回归算法中分别优化各四个位置参数,割裂了四个位置变量之间的关系,造成对物体的边框回归不够准确且训练不易收敛的问题,提出一种带检测评价函数(Intersection over Union,IoU)作为损失函数的实时多目标回归人脸检测算法。首先基于Redmond等提出实时多目标回归模型,采用该模型检测实时性的机制,然后融合了IoU函数作为位置参数的损失函数,将实时多目标回归模型中的四个独立位置参数整合成一个单元进行优化,避免了基础模型的缺陷。算法在人脸检测基准库FDDB上进行测试,实验结果表明:在人脸检测的有效性上优于主流的传统人脸检测算法,检测速度上领先于其他经典深度学习方法。提出的算法在检测人脸的有效性和检测速度两者之间取得了一个较好的平衡,为构建实用的人脸相关应用系统提供了参考价值。