期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于自组织神经网络的污染场地多监测指标相关性分析 被引量:11
1
作者 马春龙 施小清 +3 位作者 许伟伟 任静华 王佩 吴吉春 《水文地质工程地质》 CAS CSCD 北大核心 2021年第3期191-202,共12页
为查明场地污染分布特征,需对场地土壤和地下水进行钻探取样,按规范的检测指标进行逐一测试。在初查和详查阶段将获得大量的土壤和地下水污染数据,数据样本数量大、监测指标多,数据结构复杂,如何从场地大数据中提取价值信息已成为研究... 为查明场地污染分布特征,需对场地土壤和地下水进行钻探取样,按规范的检测指标进行逐一测试。在初查和详查阶段将获得大量的土壤和地下水污染数据,数据样本数量大、监测指标多,数据结构复杂,如何从场地大数据中提取价值信息已成为研究热点。以某有机污染场地为例,基于自组织映射神经网络(SOM)和K均值算法开展大数据分析,深入探讨地下水和土壤中各污染指标间的相关性。结果表明:(1)基于自组织映射神经网络的大数据分析可快速挖掘复杂多维的污染场地监测数据,有效完成关键信息的提取;(2)地下水中污染检出指标存在显著的聚类特征,同一聚类中的污染指标具备相似的空间分布特征。对场地污染物检测采取先分类后分级的优化筛选策略,减少污染物检测指标数目,从而有效降低场地检测费用;(3)土壤和地下水中污染检出指标存在良好的空间相关性,这与该污染场地地下水渗流速度缓慢有关。土壤和地下水污染检出指标空间分布的相关性,有助于场地污染源的追溯。 展开更多
关键词 自组织映射神经网络 污染场地 多监测指标 相关性分析 土壤 地下水
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部