期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于89C51的水产养殖多环境参数测控系统 被引量:2
1
作者 龚振宇 庞全 李世忠 《机电工程》 CAS 2009年第4期71-73,共3页
为了实现对水产养殖多环境参数的实时监测和控制,采用PC机为上位机,89C51为下位机,阐述了水产养殖多环境参数测控系统的设计方案,实现了对溶解氧、pH值、温度、水位的实时精确采集。提出了基于模糊-PID控制的环境参数估算策略。试验结... 为了实现对水产养殖多环境参数的实时监测和控制,采用PC机为上位机,89C51为下位机,阐述了水产养殖多环境参数测控系统的设计方案,实现了对溶解氧、pH值、温度、水位的实时精确采集。提出了基于模糊-PID控制的环境参数估算策略。试验结果表明,该系统能实现对水产养殖环境参数的准确监控、增产效果显著。 展开更多
关键词 水产养殖 多环境参数 测控系统 通讯编程
在线阅读 下载PDF
多环境参数蔬菜大棚控制系统设计 被引量:1
2
作者 王永帅 王文伟 吴永章 《湖北农业科学》 2015年第2期446-448,共3页
为改善目前蔬菜大棚控制系统中监控参数少及较难远程控制等情况,设计了一个更加完善的系统。结果表明,该系统人机交互界面良好、操作简单方便、自动化程度较高,有利于蔬菜大棚的智能化和统一化管理,具有很好的应用前景。
关键词 蔬菜大棚 多环境参数 智能 应用前景
在线阅读 下载PDF
矿用救生舱多环境参数数据采集器设计
3
作者 朱晓洁 张立斌 王启峰 《工矿自动化》 北大核心 2012年第6期15-17,共3页
针对传统的传感器只能采集1种或2种环境参数,不适合在矿用救生舱使用的问题,设计了一种矿用救生舱多环境参数数据采集器;给出了该采集器主板+变送器的结构,详细介绍了主板的硬件及软件设计。测试结果表明,该采集器测量误差小、响应时间... 针对传统的传感器只能采集1种或2种环境参数,不适合在矿用救生舱使用的问题,设计了一种矿用救生舱多环境参数数据采集器;给出了该采集器主板+变送器的结构,详细介绍了主板的硬件及软件设计。测试结果表明,该采集器测量误差小、响应时间快、使用灵活方便。 展开更多
关键词 矿用救生舱 多环境参数 数据采集 传感器 主板 变送器
在线阅读 下载PDF
高精度空气折射率测量系统设计与实现 被引量:10
4
作者 闵帅博 严利平 +3 位作者 崔建军 王冬 束红林 陈恺 《计量学报》 CSCD 北大核心 2020年第11期1332-1338,共7页
针对商用空气折射率测量装置受到传感器采集性能和解算公式准确度的影响使得实际测量精度较低的问题,基于便携式多环境参数采集装置,设计了一套空气折射率测量系统,采集环境中的温湿度、大气压强状态信息,对3种折射率间接测量公式进行... 针对商用空气折射率测量装置受到传感器采集性能和解算公式准确度的影响使得实际测量精度较低的问题,基于便携式多环境参数采集装置,设计了一套空气折射率测量系统,采集环境中的温湿度、大气压强状态信息,对3种折射率间接测量公式进行误差分析,并和商用环境补偿器进行性能对比。实验结果表明:在压强为100.17~100.21 kPa,温度为21.1~21.9℃,湿度为45.9~58.0%RH的实验条件下,该测量系统的测量偏差比商用环境补偿器低2.69×10^-7。 展开更多
关键词 计量学 空气折射率 多环境参数 便携式采集装置 环境补偿器 测量系统 实时分析
在线阅读 下载PDF
MPMS-SGH:Multi-parameter Multi-step Prediction Model for Solar Greenhouse
5
作者 JI Ronghua WANG Wenxuan +2 位作者 AN Dong QI Shaotian LIU Jincun 《农业机械学报》 2025年第7期265-278,共14页
Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parame... Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parameters.The monitoring platform collected data on the internal environment of the solar greenhouse for one year,including temperature,humidity,and light intensity.Additionally,meteorological data,comprising outdoor temperature,outdoor humidity,and outdoor light intensity,was gathered during the same time frame.The characteristics and interrelationships among these parameters were investigated by a thorough analysis.The analysis revealed that environmental parameters in solar greenhouses displayed characteristics such as temporal variability,non-linearity,and periodicity.These parameters exhibited complex coupling relationships.Notably,these characteristics and coupling relationships exhibited pronounced seasonal variations.The multi-parameter multi-step prediction model for solar greenhouse(MPMS-SGH)was introduced,aiming to accurately predict three key greenhouse environmental parameters,and the model had certain seasonal adaptability.MPMS-SGH was structured with multiple layers,including an input layer,a preprocessing layer,a feature extraction layer,and a prediction layer.The input layer was used to generate the original sequence matrix,which included indoor temperature,indoor humidity,indoor light intensity,as well as outdoor temperature and outdoor light intensity.Then the preprocessing layer normalized,decomposed,and positionally encoded the original sequence matrix.In the feature extraction layer,the time attention mechanism and frequency attention mechanism were used to extract features from the trend component and the seasonal component,respectively.Finally,the prediction layer used a multi-layer perceptron to perform multi-step prediction of indoor environmental parameters(i.e.temperature,humidity,and light intensity).The parameter selection experiment evaluated the predictive performance of MPMS-SGH on input and output sequences of different lengths.The results indicated that with a constant output sequence length,the prediction accuracy of MPMS-SGH was firstly increased and then decreased with the increase of input sequence length.Specifically,when the input sequence length was 100,MPMS-SGH had the highest prediction accuracy,with RMSE of 0.22℃,0.28%,and 250lx for temperature,humidity,and light intensity,respectively.When the length of the input sequence remained constant,as the length of the output sequence increased,the accuracy of the model in predicting the three environmental parameters was continuously decreased.When the length of the output sequence exceeded 45,the prediction accuracy of MPMS-SGH was significantly decreased.In order to achieve the best balance between model size and performance,the input sequence length of MPMS-SGH was set to be 100,while the output sequence length was set to be 35.To assess MPMS-SGH’s performance,comparative experiments with four prediction models were conducted:SVR,STL-SVR,LSTM,and STL-LSTM.The results demonstrated that MPMS-SGH surpassed all other models,achieving RMSE of 0.15℃for temperature,0.38%for humidity,and 260lx for light intensity.Additionally,sequence decomposition can contribute to enhancing MPMS-SGH’s prediction performance.To further evaluate MPMS-SGH’s capabilities,its prediction accuracy was tested across different seasons for greenhouse environmental parameters.MPMS-SGH had the highest accuracy in predicting indoor temperature and the lowest accuracy in predicting humidity.And the accuracy of MPMS-SGH in predicting environmental parameters of the solar greenhouse fluctuated with seasons.MPMS-SGH had the highest accuracy in predicting the temperature inside the greenhouse on sunny days in spring(R^(2)=0.91),the highest accuracy in predicting the humidity inside the greenhouse on sunny days in winter(R^(2)=0.83),and the highest accuracy in predicting the light intensity inside the greenhouse on cloudy days in autumm(R^(2)=0.89).MPMS-SGH had the lowest accuracy in predicting three environmental parameters in a sunny summer greenhouse. 展开更多
关键词 solar greenhouse environmental parameter time series multi-step prediction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部