为了解决高比例分布式电源(distributed generation,DG)大规模并网后实时量测数目缺失、传统预测辅助状态估计方法(forecasting-aided state estimation,FASE)估计精度有限等问题,提出了基于改进Crossformer伪量测构建的主动配电网FASE...为了解决高比例分布式电源(distributed generation,DG)大规模并网后实时量测数目缺失、传统预测辅助状态估计方法(forecasting-aided state estimation,FASE)估计精度有限等问题,提出了基于改进Crossformer伪量测构建的主动配电网FASE方法。首先,基于最大信息系数法(maximal information coefficient,MIC)筛选出高相关性的输入特征,提高预测模型的精度;然后,通过全变差正则化技术(total variation regularized,TV)优化鲁棒主成分分析法(robust principal component analysis,RPCA),构建TRPCA层,并将其嵌入到Crossformer中,以填补Crossformer无法有效处理非高斯噪声的空白;最后,利用改进的预测模型进行超短期负荷预测,经潮流计算得到节点伪量测,在量测不足情况下补全缺失数据,并结合扩展卡尔曼滤波器(extended Kalman filter,EKF)进行状态估计。在IEEE 33节点和IEEE 118节点标准配电网上进行仿真测试,结果表明所提方法在估计精度和鲁棒性等方面具有一定优势,可为主动配电网FASE提供参考。展开更多
为解决扩展卡尔曼滤波算法估算锂电池荷电状态(State of charge,SOC)时存在的系统噪声统计不确定性和电池模型不准确性问题,该文提出了一种基于改进型Sage-Husa自适应强跟踪卡尔曼滤波的SOC估算算法。以参数辨识得到的锂电池等效电路模...为解决扩展卡尔曼滤波算法估算锂电池荷电状态(State of charge,SOC)时存在的系统噪声统计不确定性和电池模型不准确性问题,该文提出了一种基于改进型Sage-Husa自适应强跟踪卡尔曼滤波的SOC估算算法。以参数辨识得到的锂电池等效电路模型为基础,在扩展卡尔曼滤波算法中引入一个强跟踪滤波器的渐消因子来加强跟踪能力,结合可对时变噪声进行特征统计的Sage-Husa自适应滤波器来调整系统噪声参数,实现了锂电池SOC的估算。最后通过锂电池模拟工况实验,验证了该算法相比于扩展卡尔曼滤波具有更高的精度和实用性。展开更多
锂电池的荷电状态(state of charge,SOC)估计是电池管理系统的重要组成部分,针对锂电池非线性的特性,提出了采用离散滑模观测器估计锂电池荷电状态的方法,给出了离散滑模观测器的设计方法及其稳定性证明。基于锂电池的戴维南等效电路模...锂电池的荷电状态(state of charge,SOC)估计是电池管理系统的重要组成部分,针对锂电池非线性的特性,提出了采用离散滑模观测器估计锂电池荷电状态的方法,给出了离散滑模观测器的设计方法及其稳定性证明。基于锂电池的戴维南等效电路模型,给出了该方法的设计过程,在不同的充放电电流倍率和环境温度下,进行了锂电池模型的参数辨识,通过与常用的扩展卡尔曼滤波法相比较,分析了离散滑模观测器对锂电池SOC估计的精度、鲁棒性和算法复杂度等方面的性能。实验结果表明,采用该算法可实现锂电池SOC快速精确地估计,误差可控制在约3%,验证了该方法的可行性。展开更多
文摘为了解决高比例分布式电源(distributed generation,DG)大规模并网后实时量测数目缺失、传统预测辅助状态估计方法(forecasting-aided state estimation,FASE)估计精度有限等问题,提出了基于改进Crossformer伪量测构建的主动配电网FASE方法。首先,基于最大信息系数法(maximal information coefficient,MIC)筛选出高相关性的输入特征,提高预测模型的精度;然后,通过全变差正则化技术(total variation regularized,TV)优化鲁棒主成分分析法(robust principal component analysis,RPCA),构建TRPCA层,并将其嵌入到Crossformer中,以填补Crossformer无法有效处理非高斯噪声的空白;最后,利用改进的预测模型进行超短期负荷预测,经潮流计算得到节点伪量测,在量测不足情况下补全缺失数据,并结合扩展卡尔曼滤波器(extended Kalman filter,EKF)进行状态估计。在IEEE 33节点和IEEE 118节点标准配电网上进行仿真测试,结果表明所提方法在估计精度和鲁棒性等方面具有一定优势,可为主动配电网FASE提供参考。
文摘为解决扩展卡尔曼滤波算法估算锂电池荷电状态(State of charge,SOC)时存在的系统噪声统计不确定性和电池模型不准确性问题,该文提出了一种基于改进型Sage-Husa自适应强跟踪卡尔曼滤波的SOC估算算法。以参数辨识得到的锂电池等效电路模型为基础,在扩展卡尔曼滤波算法中引入一个强跟踪滤波器的渐消因子来加强跟踪能力,结合可对时变噪声进行特征统计的Sage-Husa自适应滤波器来调整系统噪声参数,实现了锂电池SOC的估算。最后通过锂电池模拟工况实验,验证了该算法相比于扩展卡尔曼滤波具有更高的精度和实用性。
文摘锂电池的荷电状态(state of charge,SOC)估计是电池管理系统的重要组成部分,针对锂电池非线性的特性,提出了采用离散滑模观测器估计锂电池荷电状态的方法,给出了离散滑模观测器的设计方法及其稳定性证明。基于锂电池的戴维南等效电路模型,给出了该方法的设计过程,在不同的充放电电流倍率和环境温度下,进行了锂电池模型的参数辨识,通过与常用的扩展卡尔曼滤波法相比较,分析了离散滑模观测器对锂电池SOC估计的精度、鲁棒性和算法复杂度等方面的性能。实验结果表明,采用该算法可实现锂电池SOC快速精确地估计,误差可控制在约3%,验证了该方法的可行性。