期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MSSA-SVM的电缆隧道故障预警系统设计 被引量:6
1
作者 纪超 王亮 +2 位作者 王孝敬 李小兵 曹雯 《工程设计学报》 CSCD 北大核心 2023年第1期109-116,共8页
为了实现电缆隧道环境的在线监测和故障报警,提高电缆隧道监测系统的智能化水平,提出了一种基于多特征麻雀搜索算法(multi-feature modified sparrow search algorithm, MSSA)优化支持向量机(support vector machines, SVM)的故障预警... 为了实现电缆隧道环境的在线监测和故障报警,提高电缆隧道监测系统的智能化水平,提出了一种基于多特征麻雀搜索算法(multi-feature modified sparrow search algorithm, MSSA)优化支持向量机(support vector machines, SVM)的故障预警系统。首先,对故障数据集进行归一化预处理;其次,建立多分类SVM模型,用MSSA对SVM进行参数寻优,从而建立MSSA-SVM模型,并将训练好的MSSA-SVM模型嵌入故障预警系统的数据库服务器中,对实时采集的数据进行在线监测、诊断,并及时报警;最后,通过实验验证了MSSA-SVM模型的有效性,并将其与麻雀搜索算法(sparrow search algorithm, SSA)、灰狼优化算法(grey wolf optimization, GWO)和粒子群算法(particle swarm optimization, PSO)进行对照实验,实验结果表明,MSSA-SVM模型的故障识别准确率最高,其识别准确率可达95%。研究结果为有效提高电缆隧道在线监测的智能性和准确性提供了参考。 展开更多
关键词 电缆隧道 监测系统 支持向量机 故障诊断 多特征麻雀搜索算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部