图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异...图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异常检测任务转化为监督学习任务;构建了多层次特征融合网络,将神经网络中不同层次特征进行融合,丰富了特征中的低层纹理信息和高层语义信息,使得用于异常检测的特征更具区分性;训练时,设计了分数约束损失和一致性约束损失,并结合特征约束损失对整个网络模型进行训练。实验结果表明,MVTec数据集上图像级检测接收机工作特性曲线下面积(area under the receiver operating characteristic, AUROC)平均值为98.7%,像素级定位AUROC平均值为97.9%,每区域重叠率平均值为94.2%,均高于现有的异常检测算法。展开更多
为了解决施工场景下安全帽佩戴检测时,由于人员密集、遮挡和复杂背景等原因造成的小目标漏检和错检的问题,提出一种基于YOLOv8n的双重注意力机制的跨层多尺度安全帽佩戴检测算法。首先,设计微小目标检测头,以提高模型对小目标的检测能力...为了解决施工场景下安全帽佩戴检测时,由于人员密集、遮挡和复杂背景等原因造成的小目标漏检和错检的问题,提出一种基于YOLOv8n的双重注意力机制的跨层多尺度安全帽佩戴检测算法。首先,设计微小目标检测头,以提高模型对小目标的检测能力;其次,在特征提取网络中嵌入双重注意力机制,从而更加关注复杂场景下目标信息的特征捕获;然后,将特征融合网络替换成重参数化泛化特征金字塔网络(RepGFPN)改进后的跨层多尺度特征融合结构S-GFPN(Selective layer Generalized Feature Pyramid Network),以实现小目标特征层信息和其他特征层的多尺度融合,并建立长期的依赖关系,从而抑制背景信息的干扰;最后,采用MPDIOU(Intersection Over Union with Minimum Point Distance)损失函数来解决尺度变化不敏感的问题。在公开数据集GDUT-HWD上的实验结果表明,改进后的模型比YOLOv8n的mAP@0.5提升了3.4个百分点,对蓝色、黄色、白色和红色安全帽的检测精度分别提升了2.0、1.1、4.6和9.1个百分点,在密集、遮挡、小目标、反光和黑暗这5类复杂场景下的可视化检测效果也优于YOLOv8n,为实际施工场景中安全帽佩戴检测提供了一种有效方法。展开更多
文摘图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异常检测任务转化为监督学习任务;构建了多层次特征融合网络,将神经网络中不同层次特征进行融合,丰富了特征中的低层纹理信息和高层语义信息,使得用于异常检测的特征更具区分性;训练时,设计了分数约束损失和一致性约束损失,并结合特征约束损失对整个网络模型进行训练。实验结果表明,MVTec数据集上图像级检测接收机工作特性曲线下面积(area under the receiver operating characteristic, AUROC)平均值为98.7%,像素级定位AUROC平均值为97.9%,每区域重叠率平均值为94.2%,均高于现有的异常检测算法。
文摘为了解决施工场景下安全帽佩戴检测时,由于人员密集、遮挡和复杂背景等原因造成的小目标漏检和错检的问题,提出一种基于YOLOv8n的双重注意力机制的跨层多尺度安全帽佩戴检测算法。首先,设计微小目标检测头,以提高模型对小目标的检测能力;其次,在特征提取网络中嵌入双重注意力机制,从而更加关注复杂场景下目标信息的特征捕获;然后,将特征融合网络替换成重参数化泛化特征金字塔网络(RepGFPN)改进后的跨层多尺度特征融合结构S-GFPN(Selective layer Generalized Feature Pyramid Network),以实现小目标特征层信息和其他特征层的多尺度融合,并建立长期的依赖关系,从而抑制背景信息的干扰;最后,采用MPDIOU(Intersection Over Union with Minimum Point Distance)损失函数来解决尺度变化不敏感的问题。在公开数据集GDUT-HWD上的实验结果表明,改进后的模型比YOLOv8n的mAP@0.5提升了3.4个百分点,对蓝色、黄色、白色和红色安全帽的检测精度分别提升了2.0、1.1、4.6和9.1个百分点,在密集、遮挡、小目标、反光和黑暗这5类复杂场景下的可视化检测效果也优于YOLOv8n,为实际施工场景中安全帽佩戴检测提供了一种有效方法。