期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
多点最优最小熵反褶积结合交互信息的过载信号特征提取
1
作者 谢雨岑 房安琪 +4 位作者 郜王鑫 李彩芳 邵志豪 张珂 唐万杰 《探测与控制学报》 CSCD 北大核心 2024年第5期1-7,共7页
针对弹药超高速侵彻多层建筑物的过程中,侵彻过载加速度信号产生粘连混叠,影响侵彻穿层特征的精准辨识提取,造成引信难以精确计层的问题,提出一种基于多点最优最小熵反褶积(MOMEDA)和交互信息的过载信号穿层特征提取方法。考虑到引信加... 针对弹药超高速侵彻多层建筑物的过程中,侵彻过载加速度信号产生粘连混叠,影响侵彻穿层特征的精准辨识提取,造成引信难以精确计层的问题,提出一种基于多点最优最小熵反褶积(MOMEDA)和交互信息的过载信号穿层特征提取方法。考虑到引信加速度敏感系统在高频强动载下的响应规律未知,该方法利用MOMEDA的非迭代盲解卷积增强技术来实现对原始侵彻过载信号的降噪,基于交互信息理论进一步优化MOMEDA最佳滤波器的长度以增强原始侵彻过载信号中多层目标特征。通过对引信超高速侵彻多层靶板的仿真、试验信号的研究结果表明,该方法可以有效突显原始侵彻过载信号中的穿层特征,为强粘连信号下的引信精确计层功能实现提供依据。 展开更多
关键词 超高速侵彻 多点最优最小反褶积 交互信息 特征提取
在线阅读 下载PDF
采用改进多点最优最小熵反褶积的齿轮箱复合故障特征提取 被引量:6
2
作者 王靖岳 李建刚 王浩天 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第5期70-77,94,共9页
针对强背景噪声下齿轮箱复合故障中的微弱故障特征难以提取的问题,提出了一种改进多点最优最小熵反褶积的齿轮箱复合故障特征提取方法。将小波降噪作为前置滤波器,克服了多点峭度谱在强背景噪声下难以有效识别信号中的微弱故障周期成分... 针对强背景噪声下齿轮箱复合故障中的微弱故障特征难以提取的问题,提出了一种改进多点最优最小熵反褶积的齿轮箱复合故障特征提取方法。将小波降噪作为前置滤波器,克服了多点峭度谱在强背景噪声下难以有效识别信号中的微弱故障周期成分的缺点,使信号峭度增加了65.9%,突出了微弱故障周期成分;根据多点峭度谱识别出的故障周期成分设置合理的故障区间,利用多点最优最小熵反褶积突出了信号中的故障周期,避免了对信号直接包络解调而出现的漏诊现象;将差分能量算子解调应用于改进算法处理后的信号,与传统的Hilbert解调方法相比,该算法得到的解调谱中故障特征频率的峰值更加明显。通过对仿真信号与齿轮箱中齿轮点蚀磨损复合故障振动信号的研究结果表明,改进多点最优最小熵反褶积方法能够完整地提取信号中的故障特征频率成分,成功率达到了100%;与变分模态分解进行了对比分析,改进算法有效消除了模态混叠现象。仿真和试验结果表明,改进算法可以有效提取强背景噪声下齿轮箱复合故障中的微弱故障特征。 展开更多
关键词 复合故障 小波降噪 多点最优最小反褶积 差分能量算子解调
在线阅读 下载PDF
利用参数自适应多点最优最小熵反褶积的行星轮轴承微弱故障特征提取 被引量:14
3
作者 王朝阁 李宏坤 +2 位作者 胡少梁 胡瑞杰 任学平 《振动工程学报》 EI CSCD 北大核心 2021年第3期633-645,共13页
针对行星轮轴承故障振动信号受复杂传递路径、强背景噪声和齿轮振动干扰的影响,导致故障特征微弱难以提取的问题,提出一种参数自适应的多点最优最小熵反褶积(parameter adaptive multipoint optimal minimum entropy deconvolution adju... 针对行星轮轴承故障振动信号受复杂传递路径、强背景噪声和齿轮振动干扰的影响,导致故障特征微弱难以提取的问题,提出一种参数自适应的多点最优最小熵反褶积(parameter adaptive multipoint optimal minimum entropy deconvolution adjusted,PA-MOMEDA)的行星轮轴承微弱故障诊断方法。为克服MOMEDA依赖人为经验选取主要影响参数的不足,建立多目标优化新指标,通过粒子群算法优良的寻优特性来自动确定最佳的影响参数,使用参数优化的MOMEDA对行星轮轴承故障信号进行最佳解卷积运算。针对MOMEDA解卷积信号存在严重边缘效应的问题,设计一种波形延伸策略对解卷积信号进行自适应补偿,提高了MOMEDA对微弱故障冲击特征的解卷积性能。对提升的解卷积信号进行包络解调处理,即可从其包络谱中提取到明显的故障特征频率。通过行星轮轴承故障仿真和工程实验数据分析表明,相比传统的MOMEDA方法、MCKD方法和快速谱峭度方法,该方法能成功地提取微弱的故障冲击特征且更加明显,提高了行星轮轴承故障诊断的准确性和鲁棒性。 展开更多
关键词 故障诊断 行星齿轮箱 行星轮轴承 特征提取 多点最优最小反褶积(momeda)
在线阅读 下载PDF
最优最小熵反褶积与包络-导数能量算子在轴承故障提取中的应用 被引量:6
4
作者 杨娜 刘晔 武昆 《电子测量与仪器学报》 CSCD 北大核心 2020年第4期134-141,共8页
最小熵反褶积是检测轴承故障或齿轮故障信号等类脉冲信号的一种有效技术,但是该方法仍存在一个不足,即在使用前须设置滤波器的长度,而该参数值的选择一般只能通过技术人员的经验选择。针对这个局限性,提出了一个基于峭度、排列熵与信号... 最小熵反褶积是检测轴承故障或齿轮故障信号等类脉冲信号的一种有效技术,但是该方法仍存在一个不足,即在使用前须设置滤波器的长度,而该参数值的选择一般只能通过技术人员的经验选择。针对这个局限性,提出了一个基于峭度、排列熵与信号能量的滤波器长度选择准则。通过该准则,可以有效地挑选出最优的滤波器长度,从而更好地对故障信号进行滤波。随后,一种增强的能量算子,包络-导数能量算子用来对过滤后的故障信号进行故障特征频率的提取。实验结果表明,该方法不仅可以有效地提取出轴承故障特征频率,并且与一些传统方法相比,该方法可以大大突出故障特征频率的幅值。 展开更多
关键词 轴承故障诊断 最优选择准则 最小反褶积 包络-导数能量算子
在线阅读 下载PDF
ITD结合参数优化MOMEDA的滚动轴承故障特征提取 被引量:1
5
作者 刘沛 彭珍瑞 何泽人 《机械科学与技术》 CSCD 北大核心 2024年第6期967-974,共8页
针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOME... 针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)相结合的滚动轴承故障特征提取方法。首先根据包络谱峰值因子最大原则提取包含丰富故障信息的ITD分量,其次对该分量进行MOMEDA降噪处理。对影响MOMEDA滤波效果的两个参数——故障周期T与滤波器长度L分别以多点峭度和平方包络谱的基尼指数进行优化,最后进行包络谱分析提取故障特征频率。通过仿真信号与实测信号分析表明该方法能在强噪声干扰下有效提取故障特征。 展开更多
关键词 固有时间尺度分解 多点最优最小解卷积 滚动轴承 包络谱峰值因子 基尼指数
在线阅读 下载PDF
RSK-MOMEDA与PF在滚动轴承故障预测中的应用
6
作者 赵英杰 傅子霞 沈建 《机械设计与制造》 北大核心 2025年第6期40-45,共6页
针对滚动轴承故障预测起始点确定困难以及故障预测结果不科学的问题,深入开展滚动轴承故障预测方法研究,提出了基于快速谱峭度-多点最优最小熵解卷积(Rapid Spectral Kurtosis and Multipoint Optimal Minimum Entropy Deconvolution Ad... 针对滚动轴承故障预测起始点确定困难以及故障预测结果不科学的问题,深入开展滚动轴承故障预测方法研究,提出了基于快速谱峭度-多点最优最小熵解卷积(Rapid Spectral Kurtosis and Multipoint Optimal Minimum Entropy Deconvolution Adjusted,简称RSK-MOMEDA)与粒子滤波(Particle Filter,简称PF)的滚动轴承故障预测方法。通过RSK-MOMEDA方法实现轴承早期故障特征增强,进而挖掘出滚动轴承全寿命退化数据中的早期故障发生节点,从而为后续故障预测起始点的确定提供科学依据;基于PF方法的概率统计特性,开展滚动轴承故障预测并给出置信区间下的故障预测结果,有效提升滚动轴承故障预测的置信度,为工程实际提供一种有益故障预测参考方法。 展开更多
关键词 滚动轴承 早期故障诊断 快速谱峭度-多点最优最小解卷积 粒子滤波 故障预测
在线阅读 下载PDF
联合CEF-MOMEDA的风机高速端轴承潜隐性故障敏感信息提取方法
7
作者 蔡敏 张强 +2 位作者 秦波 张海平 罗权毅 《机电工程》 北大核心 2025年第8期1428-1439,共12页
在大数据驱动的MW级半直驱风电机组滚动轴承服役期的状态智能辨识中,针对输入样本“质量差”致使所构建模型识别率低这一问题,提出了一种联合相关能量波动(CEF)评价准则与多点最优最小熵解卷积(MOMEDA)的潜隐性故障敏感信息提取方法。首... 在大数据驱动的MW级半直驱风电机组滚动轴承服役期的状态智能辨识中,针对输入样本“质量差”致使所构建模型识别率低这一问题,提出了一种联合相关能量波动(CEF)评价准则与多点最优最小熵解卷积(MOMEDA)的潜隐性故障敏感信息提取方法。首先,将拾取的振动数据由变分模态分解为若干个表征原数据不同成分的本征模分量;然后,根据上述分量能量的变化,量化、评估所包含的潜隐性故障占比,筛选并提取敏感成分后对故障信号进行了重构;接着,利用多点最优最小熵解卷积对重构后的数据进行了有效成分增强提取;最后,将上述能量波动评价准则与多点最优最小熵解卷积联合提取的敏感信息数据作为深度置信网络(DBN)的输入,构建了滚动轴承状态智能辨识模型,采用现场实验与凯斯西储大学(CWRU)数据集对CEF-MOMEDA的方法进行了验证。研究结果表明:基于CEF-MOMEDA-DBN的模型在风机滚动轴承诊断中的故障识别率更高;在凯斯西储大学数据集上,与集合经验模态分解(EEMD)、局部均值分解(LMD)相比,CEF-MOMEDA方法联合能量波动准则提取敏感信息数据并作为智能辨识模型的输入后,故障识别率分别提高了2.5%和1.25%。该方法能够有效提高故障识别的准确率,具有更强的实用性和泛化性。 展开更多
关键词 MW级半直驱风电机组 滚动轴承故障诊断 敏感成分联合提取 相关能量波动 多点最优最小解卷积 深度置信网络 集合经验模态分解 局部均值分解
在线阅读 下载PDF
并行RSSD和改进MOMEDA的齿轮箱故障诊断 被引量:2
8
作者 尹志安 孙文龙 王凯 《机械设计与制造》 北大核心 2024年第9期196-204,共9页
为了克服传统共振稀疏信号分解与矩量法的局限性,提高其提取微弱故障特征的能力,提出了一种并行双参数优化RSSD和改进MOMEDA的行星齿轮箱故障诊断方法。首先,并行双参数优化RSSD构造了与不同故障特征相匹配的小波基函数,并将复合故障信... 为了克服传统共振稀疏信号分解与矩量法的局限性,提高其提取微弱故障特征的能力,提出了一种并行双参数优化RSSD和改进MOMEDA的行星齿轮箱故障诊断方法。首先,并行双参数优化RSSD构造了与不同故障特征相匹配的小波基函数,并将复合故障信号自适应分解为不同的谐振分量,实现了复杂故障特征的解耦。其次,利用改进MOMEDA对共振分量进行去卷积滤波,有效地消除了复杂传输路径和强环境噪声的影响,增强了与弱故障相关的脉冲。最后,通过对行星齿轮箱实验平台的实际故障信号的分析,证明了提出的方法不仅具有良好的解耦性能以及提取弱故障信号能力,且能够全面、准确地提取不同类型的故障。 展开更多
关键词 共振稀疏信号分解 多点最优最小反褶积 行星齿轮箱 故障诊断
在线阅读 下载PDF
应用CEEMD降噪与自适应MOMEDA的轴承故障特征提取方法 被引量:3
9
作者 宋宇博 张宇飞 《中国测试》 CAS 北大核心 2024年第2期180-188,共9页
针对滚动轴承早期故障信号中冲击成分能量低且易被强烈的背景噪声所淹没的问题,该文提出一种基于互补集合经验模态分解(complete ensemble empirical mode decomposition,CEEMD)-小波阈值降噪和参数自适应多点最优最小熵解卷积(multipoi... 针对滚动轴承早期故障信号中冲击成分能量低且易被强烈的背景噪声所淹没的问题,该文提出一种基于互补集合经验模态分解(complete ensemble empirical mode decomposition,CEEMD)-小波阈值降噪和参数自适应多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)的滚动轴承故障特征提取方法。将CEEMD与小波阈值降噪结合对原始信号进行降噪;提出一种新的复合指标:峭度-包络波形因子,并以其为适应度函数设计变步长搜索法,对MOMEDA算法的滤波器长度进行寻优;基于寻优的滤波器长度对降噪的信号进行MOMEDA解卷积,并通过包络谱分析识别滚动轴承的故障特征频率。对比实验结果表明:以该文寻找的最优滤波器长度作为MOMEDA的参数,解卷积后包络谱故障频率更加清晰;且相较于传统的MOMEDA算法和小波阈值降噪-MOMEDA方法,该文提出的方法能够更有效地提取强噪声背景下微弱的故障特征信息。 展开更多
关键词 滚动轴承 故障诊断 多点最优最小解卷积 互补集合经验模态分解 小波阈值降噪
在线阅读 下载PDF
基于ASMVMD和MOMEDA的齿轮特征提取方法 被引量:1
10
作者 唐贵基 曾鹏飞 朱爽 《机电工程》 CAS 北大核心 2024年第12期2174-2184,共11页
针对齿轮信号易被强噪声干扰,导致损伤特征难以提取的问题,提出了一种基于自适应逐次多元变分模态分解(ASMVMD)和多点最优最小熵解卷积(MOMEDA)的齿轮故障特征提取方法。首先,采用加权黑猩猩优化算法对SMVMD分解参数进行了自适应寻优,以... 针对齿轮信号易被强噪声干扰,导致损伤特征难以提取的问题,提出了一种基于自适应逐次多元变分模态分解(ASMVMD)和多点最优最小熵解卷积(MOMEDA)的齿轮故障特征提取方法。首先,采用加权黑猩猩优化算法对SMVMD分解参数进行了自适应寻优,以SMVMD分解后各个通道的所有分量的平均包络谱峰值因子(Ec)之和的相反数作为寻优的适应度函数,确定了最大惩罚因子α和最大分解模态数k的最优值;然后,采用ASMVMD方法对齿轮多通道故障数据进行了自适应分解,根据Ec指标提取了各通道特定分量,并将这些分量相加,进行了信号重构;最后,采用MOMEDA解卷积处理了重构信号,进一步强化了齿轮故障的冲击特性,并利用包络谱分析解卷积信号,提取了齿轮的故障特征频率。研究结果表明:通过仿真信号和模拟实验信号的分析,可知利用ASMVMD-MOMEDA相结合的方法处理得到的信号降噪效果显著,能有效抑制无关干扰成分的影响,从包络谱中可以清晰地看到故障频率的前几阶倍频;与多元经验模态分解(MEMD)-MOMEDA相结合的方法进行对比,发现采用ASMVMD-MOMEDA方法得到的包络谱较MEMD-MOMEDA方法的谱线更加干净,各阶倍频更加明显,进一步证明ASMVMD-MOMEDA方法可以准确提取齿轮故障特征。 展开更多
关键词 齿轮损伤特征 故障特征提取 自适应逐次多元变分模态分解 多点最优最小解卷积 多通道 解卷积 包络谱峰值因子 信号重构
在线阅读 下载PDF
基于迭代SGMD与改进MOMEDA的滚动轴承微弱故障诊断
11
作者 王富珂 高丙朋 蔡鑫 《组合机床与自动化加工技术》 北大核心 2024年第12期145-150,157,共7页
针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭... 针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭度谱确定MOMEDA的故障周期,利用白鹭群优化算法(ESOA)对滤波器长度进行自适应寻优,通过IMOMEDA对最优分量进行解卷积处理;最后,对解卷积处理后的信号进行包络谱分析,提取故障特征频率完成故障诊断。仿真及实验分析结果表明,所提方法能有效提取强背景噪声下的滚动轴承微弱故障特征信息。 展开更多
关键词 滚动轴承 迭代辛几何模态分解 改进多点最优最小解卷积调整 综合指标 白鹭群化算法 故障诊断
在线阅读 下载PDF
基于编码器信号自适应MOMEDA的太阳轮故障检测
12
作者 田田 郭瑜 +2 位作者 樊家伟 徐万通 朱云贵 《振动.测试与诊断》 EI CSCD 北大核心 2024年第6期1173-1180,1249,共9页
针对行星减速器太阳轮故障检测问题,提出了一种基于改进自适应多点最优最小熵反褶积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的太阳轮故障检测方法。首先,基于编码器信号传递路径短、与动力学直接相关... 针对行星减速器太阳轮故障检测问题,提出了一种基于改进自适应多点最优最小熵反褶积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的太阳轮故障检测方法。首先,基于编码器信号传递路径短、与动力学直接相关的优势,结合传动参数,计算得到故障特征周期,确定故障周期搜索区间及步长;其次,利用谱负熵最大化原则自适应确定优化滤波器长度,并得到解卷积后的信号;最后,采用包络谱分析揭示太阳轮齿根裂纹故障特征。通过仿真和实测数据分析,验证了所提方法的有效性。 展开更多
关键词 多点最优最小反褶积 瞬时角速度 谱负 太阳轮齿根裂纹 特征提取
在线阅读 下载PDF
基于IEWT-MOMEDA-FSC的滚动轴承故障诊断 被引量:2
13
作者 吴振雄 王林军 +2 位作者 邹腾枭 陈梦华 陈保家 《三峡大学学报(自然科学版)》 北大核心 2024年第1期92-98,共7页
针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,... 针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,通过增强包络谱的极值点来自适应地划分频谱,以分割的频谱为边界构建小波滤波器组将信号分解为多个IMF分量,利用相关峭度准则筛选出有效的分量进行叠加;其次,用MOMEDA对其进行降噪处理,将降噪后的信号进行快速谱相关分析,得到增强包络谱图;最后,将增强包络谱图中幅值较高的频率与故障频率对比,判定其失效形式,用所提出的方法对实测轴承故障信号进行分析验证.结果表明,所提出的方法能有效降低噪音干扰且增强信号故障冲击特性,在噪声环境下具有较强的故障特征提取能力. 展开更多
关键词 改进经验小波变换 多点最优最小解卷积 快速谱相关 峭度 互相关
在线阅读 下载PDF
基于MOMEDA与LMD的往复压缩机活塞杆沉降信号故障特征提取方法研究 被引量:1
14
作者 何明 方燚 +5 位作者 孙瑞亮 李豪 刘世成 范文俊 闫慧敏 舒悦 《流体机械》 CSCD 北大核心 2024年第11期72-78,共7页
针对传统经验模态分解(EMD)等方法在当前往复压缩机活塞杆故障诊断中故障特征提取能力不足的问题,本文通过电涡流传感器获得往复压缩机活塞杆的沉降信号,利用多点最优最小熵解卷积算法(MOMEDA)对信号周期进行自适应调整去干扰处理,再对... 针对传统经验模态分解(EMD)等方法在当前往复压缩机活塞杆故障诊断中故障特征提取能力不足的问题,本文通过电涡流传感器获得往复压缩机活塞杆的沉降信号,利用多点最优最小熵解卷积算法(MOMEDA)对信号周期进行自适应调整去干扰处理,再对其进行局部均值分解(LMD),得到信号所对应的多个乘积函数(PF)分量的特征参数因子,包括偏度系数gi、峭度系数qi和总能量比Ei/E。对比活塞杆正常和故障状态(支撑环磨损、紧固元件松动和早期裂纹)下的特征参数变化,结果显示:在活塞杆支撑环磨损情况下,g1和q3的值将分别达到-0.02和1.60,与正常值相差3~5倍;活塞杆紧固原件松动情况下,g1,g3,q1,q3均会出现大幅度偏差,甚至呈现出超过正常值10倍以上的差距;活塞杆早期裂纹情况下,低阶分量g4和q4会出现一些变化,分别达到-1.30和1.60;MOMEDA与LMD相结合的方法,能够准确、有效地对往复压缩机活塞杆沉降信号进行判断,相比于传统的EMD信号分析方法,该方法在活塞杆故障诊断领域展现出更高的实用性。 展开更多
关键词 多点最优最小解卷积算法 局部均值分解 经验模态分解 故障诊断 往复压缩机 活塞杆
在线阅读 下载PDF
基于MKurt-MOMEDA的齿轮箱复合故障特征提取 被引量:20
15
作者 王志坚 王俊元 +3 位作者 赵志芳 吴文轩 张纪平 寇彦飞 《振动.测试与诊断》 EI CSCD 北大核心 2017年第4期830-834,共5页
针对齿轮箱中旋转零部件的故障信号是周期性的冲击信号这一特性,提出了一种基于多点峭度(multipoint kurtosis,简称MKurt)和多点最优最小熵反褶积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的齿轮箱复合... 针对齿轮箱中旋转零部件的故障信号是周期性的冲击信号这一特性,提出了一种基于多点峭度(multipoint kurtosis,简称MKurt)和多点最优最小熵反褶积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的齿轮箱复合故障特征提取方法。利用MKurt可以有效提取齿轮箱中被噪声淹没的冲击性振动信号的周期,实现对振动信号振动源的追踪。根据故障的周期设置合理的周期区间,通过MOMEDA对原信号进行降噪,进一步提取原信号的周期性冲击。通过仿真信号和实测数据的分析和验证,证明了MKurt-MOMEDA方法可以准确有效地诊断齿轮箱复合故障故障特征。 展开更多
关键词 多点峭度 最优最小反褶积 复合故障 特征提取
在线阅读 下载PDF
基于SK‑MOMEDA的风电机组轴承复合故障特征分离提取 被引量:7
16
作者 向玲 李京蓄 +1 位作者 胡爱军 李营 《振动.测试与诊断》 EI CSCD 北大核心 2021年第4期644-651,826,共9页
针对在实际工况中风电机组滚动轴承发生复合故障时,多个故障间相互作用,彼此干扰,造成复合故障特征难以分离问题,提出了基于谱峭度(spectral kurtosis,简称SK)与多点最优调整的最小熵解卷积(multipoint optimal minimum entropy deconvo... 针对在实际工况中风电机组滚动轴承发生复合故障时,多个故障间相互作用,彼此干扰,造成复合故障特征难以分离问题,提出了基于谱峭度(spectral kurtosis,简称SK)与多点最优调整的最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的风电机组滚动轴承复合故障特征分离提取方法。首先,对复合故障信号进行谱峭度分析,选出能量较大的共振频带,并通过构建带通滤波器对相应的共振频带进行滤波,对滤波信号进行包络谱分析,对单一故障特征进行分离提取;其次,对未能实现单一故障特征提取的滤波信号进行多点峭度谱分析并确定故障周期,应用MOMEDA完成后续分离提取过程。仿真信号和工程应用分析结果表明,该方法能够准确且有效地实现轴承复合故障特征的分离提取。 展开更多
关键词 风电机组 轴承 复合故障 分离提取 谱峭度 多点最优调整的最小解卷积
在线阅读 下载PDF
基于MOMEDA和增强倒频谱的风电机组齿轮箱多故障诊断方法 被引量:24
17
作者 胡爱军 严家祥 白泽瑞 《振动与冲击》 EI CSCD 北大核心 2021年第7期268-273,共6页
风电机组齿轮箱结构复杂,当齿轮、轴承存在多故障时,由于各故障强弱不同、故障间相互耦合及噪声干扰,造成故障诊断准确率低及漏诊问题。提出了一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted... 风电机组齿轮箱结构复杂,当齿轮、轴承存在多故障时,由于各故障强弱不同、故障间相互耦合及噪声干扰,造成故障诊断准确率低及漏诊问题。提出了一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)和增强倒频谱的风电机组齿轮箱多故障诊断方法。依据齿轮和轴承不同部位的故障特征频率设置合理的解卷积周期,利用MOMEDA对原始信号进行预处理;再通过增强倒频谱进一步抑制噪声干扰和增强故障特征;将增强倒频谱中的突出成分与齿轮箱故障特征频率对比,判断故障类型。实际风电机组齿轮箱多故障振动试验数据分析结果表明,该方法可以有效地提取出齿轮箱多故障特征信息。 展开更多
关键词 齿轮箱 多故障诊断 特征提取 多点最优最小解卷积(momeda) 增强倒频谱
在线阅读 下载PDF
基于MED-MOMEDA的风电齿轮箱复合故障特征提取研究 被引量:12
18
作者 王志坚 张纪平 +3 位作者 王俊元 段能全 寇彦飞 吴文轩 《电机与控制学报》 EI CSCD 北大核心 2018年第9期111-118,共8页
强噪环境下,齿轮箱复合故障中的微弱故障特征难以提取,因此提出了基于多点最优最小熵反褶积(MOMEDA)的复合故障提取方法。首先对最小熵反褶积(MED)和最大相关峭度反褶积(MCKD)两种方法进行改进,以多点峭度最大值为目标,对信噪比不同的... 强噪环境下,齿轮箱复合故障中的微弱故障特征难以提取,因此提出了基于多点最优最小熵反褶积(MOMEDA)的复合故障提取方法。首先对最小熵反褶积(MED)和最大相关峭度反褶积(MCKD)两种方法进行改进,以多点峭度最大值为目标,对信噪比不同的仿真信号,通过设置合理的周期区间逐个追踪复合故障的周期成分,验证了此方法降噪性能;然后将MED-MOMEDA应用风电齿轮箱复合故障实验台中,成功提取出复合故障特征;最后用文中所提方法与EEMD对比分析进一步验证了此方法的可行性。 展开更多
关键词 复合故障 最小反褶积 最大相关峭度反褶积 最优最小反褶积
在线阅读 下载PDF
AVMD-IMOMEDA在滚动轴承声学复合故障诊断的应用 被引量:7
19
作者 周文杰 周俊 +1 位作者 柳小勤 刘韬 《振动与冲击》 EI CSCD 北大核心 2023年第24期152-159,共8页
针对滚动轴承声信号存在较强的背景噪声干扰,微弱故障特征信息难以有效提取等问题,并考虑到声信号非接触式测量的优势。提出一种参数自适应变分模式分解结合改进多点最优最小熵反褶积(improve multipoint optimal minimum entropy decon... 针对滚动轴承声信号存在较强的背景噪声干扰,微弱故障特征信息难以有效提取等问题,并考虑到声信号非接触式测量的优势。提出一种参数自适应变分模式分解结合改进多点最优最小熵反褶积(improve multipoint optimal minimum entropy deconvolution adjusted, MOMEDA)的复合故障声学诊断方法;采用综合指标解决变分模态分解(variational mode decomposition, VMD)参数自适应选择问题,利用最大加权峭度识别最优分量并重构信号,增强与故障特征相关的脉冲特征信息;结合IMOMEDA方法从重构信号中分离提取周期性的脉冲信号,通过包络解调获取故障特征频率。仿真信号和试验信号验证了该方法的有效性,与传统VMD、MOMEDA、VMD-MCKD(maximum correlation kurtosis deconvolution)方法进行比较,凸显了方法的优越性。 展开更多
关键词 自适应变分模式分解 改进多点最优最小反褶积(Imomeda) 加权峭度 复合故障 声学诊断
在线阅读 下载PDF
基于改进MOMEDA的齿轮箱复合故障诊断 被引量:7
20
作者 王志坚 王俊元 +2 位作者 张纪平 赵志芳 寇彦飞 《振动.测试与诊断》 EI CSCD 北大核心 2018年第1期176-181,共6页
总体经验模态分解(ensemble empirical mode decomposition,简称EEMD)对信号分解时由于白噪声选取不当,常造成能量泄露;通过计算多点峭度可以提取冲击性故障周期,但在强噪声环境下其追踪效果并不理想;考虑到多点最优最小熵反褶积(multip... 总体经验模态分解(ensemble empirical mode decomposition,简称EEMD)对信号分解时由于白噪声选取不当,常造成能量泄露;通过计算多点峭度可以提取冲击性故障周期,但在强噪声环境下其追踪效果并不理想;考虑到多点最优最小熵反褶积(multipoint optimal minimum entropy deconvolution adjuste,简称MOMEDA)提取故障时准确度受到故障周期区间范围的影响,提出了基于组合模态函数-多点最优最小熵反褶积(combined mode function-multipoint optimal minimum entropy deconvolution adjuste,简称CMF-MOMEDA)的自适应齿轮箱复合故障特征提取方法。首先,通过EEMD对信号分解,将信号按高低频依次分开;其次,取与原信号相关性强的本征模态函数,通过组合模态函数(combined mode function,简称CMF)将原信号分解为高低两个频带C_h和C_L,分别求其多点峭度谱图,提取故障周期成分;然后,设定合适的周期范围,通过MOMEDA提取故障特征;最后,将该方法应用于齿轮箱故障特征提取,以验证其可行性。 展开更多
关键词 复合故障 特征提取 强噪声环境 多点最优最小反褶积 组合模态函数
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部