期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
多点最优最小熵反褶积结合交互信息的过载信号特征提取
1
作者 谢雨岑 房安琪 +4 位作者 郜王鑫 李彩芳 邵志豪 张珂 唐万杰 《探测与控制学报》 CSCD 北大核心 2024年第5期1-7,共7页
针对弹药超高速侵彻多层建筑物的过程中,侵彻过载加速度信号产生粘连混叠,影响侵彻穿层特征的精准辨识提取,造成引信难以精确计层的问题,提出一种基于多点最优最小熵反褶积(MOMEDA)和交互信息的过载信号穿层特征提取方法。考虑到引信加... 针对弹药超高速侵彻多层建筑物的过程中,侵彻过载加速度信号产生粘连混叠,影响侵彻穿层特征的精准辨识提取,造成引信难以精确计层的问题,提出一种基于多点最优最小熵反褶积(MOMEDA)和交互信息的过载信号穿层特征提取方法。考虑到引信加速度敏感系统在高频强动载下的响应规律未知,该方法利用MOMEDA的非迭代盲解卷积增强技术来实现对原始侵彻过载信号的降噪,基于交互信息理论进一步优化MOMEDA最佳滤波器的长度以增强原始侵彻过载信号中多层目标特征。通过对引信超高速侵彻多层靶板的仿真、试验信号的研究结果表明,该方法可以有效突显原始侵彻过载信号中的穿层特征,为强粘连信号下的引信精确计层功能实现提供依据。 展开更多
关键词 超高速侵彻 多点最优最小熵反褶积 交互信息 特征提取
在线阅读 下载PDF
采用改进多点最优最小熵反褶积的齿轮箱复合故障特征提取 被引量:6
2
作者 王靖岳 李建刚 王浩天 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第5期70-77,94,共9页
针对强背景噪声下齿轮箱复合故障中的微弱故障特征难以提取的问题,提出了一种改进多点最优最小熵反褶积的齿轮箱复合故障特征提取方法。将小波降噪作为前置滤波器,克服了多点峭度谱在强背景噪声下难以有效识别信号中的微弱故障周期成分... 针对强背景噪声下齿轮箱复合故障中的微弱故障特征难以提取的问题,提出了一种改进多点最优最小熵反褶积的齿轮箱复合故障特征提取方法。将小波降噪作为前置滤波器,克服了多点峭度谱在强背景噪声下难以有效识别信号中的微弱故障周期成分的缺点,使信号峭度增加了65.9%,突出了微弱故障周期成分;根据多点峭度谱识别出的故障周期成分设置合理的故障区间,利用多点最优最小熵反褶积突出了信号中的故障周期,避免了对信号直接包络解调而出现的漏诊现象;将差分能量算子解调应用于改进算法处理后的信号,与传统的Hilbert解调方法相比,该算法得到的解调谱中故障特征频率的峰值更加明显。通过对仿真信号与齿轮箱中齿轮点蚀磨损复合故障振动信号的研究结果表明,改进多点最优最小熵反褶积方法能够完整地提取信号中的故障特征频率成分,成功率达到了100%;与变分模态分解进行了对比分析,改进算法有效消除了模态混叠现象。仿真和试验结果表明,改进算法可以有效提取强背景噪声下齿轮箱复合故障中的微弱故障特征。 展开更多
关键词 复合故障 小波降噪 多点最优最小熵反褶积 差分能量算子解调
在线阅读 下载PDF
应用CEEMD降噪与自适应MOMEDA的轴承故障特征提取方法 被引量:3
3
作者 宋宇博 张宇飞 《中国测试》 CAS 北大核心 2024年第2期180-188,共9页
针对滚动轴承早期故障信号中冲击成分能量低且易被强烈的背景噪声所淹没的问题,该文提出一种基于互补集合经验模态分解(complete ensemble empirical mode decomposition,CEEMD)-小波阈值降噪和参数自适应多点最优最小熵解卷积(multipoi... 针对滚动轴承早期故障信号中冲击成分能量低且易被强烈的背景噪声所淹没的问题,该文提出一种基于互补集合经验模态分解(complete ensemble empirical mode decomposition,CEEMD)-小波阈值降噪和参数自适应多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)的滚动轴承故障特征提取方法。将CEEMD与小波阈值降噪结合对原始信号进行降噪;提出一种新的复合指标:峭度-包络波形因子,并以其为适应度函数设计变步长搜索法,对MOMEDA算法的滤波器长度进行寻优;基于寻优的滤波器长度对降噪的信号进行MOMEDA解卷积,并通过包络谱分析识别滚动轴承的故障特征频率。对比实验结果表明:以该文寻找的最优滤波器长度作为MOMEDA的参数,解卷积后包络谱故障频率更加清晰;且相较于传统的MOMEDA算法和小波阈值降噪-MOMEDA方法,该文提出的方法能够更有效地提取强噪声背景下微弱的故障特征信息。 展开更多
关键词 滚动轴承 故障诊断 多点最优最小解卷积 互补集合经验模态分解 小波阈值降噪
在线阅读 下载PDF
基于IEWT-MOMEDA-FSC的滚动轴承故障诊断
4
作者 吴振雄 王林军 +2 位作者 邹腾枭 陈梦华 陈保家 《三峡大学学报(自然科学版)》 北大核心 2024年第1期92-98,共7页
针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,... 针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,通过增强包络谱的极值点来自适应地划分频谱,以分割的频谱为边界构建小波滤波器组将信号分解为多个IMF分量,利用相关峭度准则筛选出有效的分量进行叠加;其次,用MOMEDA对其进行降噪处理,将降噪后的信号进行快速谱相关分析,得到增强包络谱图;最后,将增强包络谱图中幅值较高的频率与故障频率对比,判定其失效形式,用所提出的方法对实测轴承故障信号进行分析验证.结果表明,所提出的方法能有效降低噪音干扰且增强信号故障冲击特性,在噪声环境下具有较强的故障特征提取能力. 展开更多
关键词 改进经验小波变换 多点最优最小解卷积 快速谱相关 峭度 互相关
在线阅读 下载PDF
AVMD-IMOMEDA在滚动轴承声学复合故障诊断的应用 被引量:6
5
作者 周文杰 周俊 +1 位作者 柳小勤 刘韬 《振动与冲击》 EI CSCD 北大核心 2023年第24期152-159,共8页
针对滚动轴承声信号存在较强的背景噪声干扰,微弱故障特征信息难以有效提取等问题,并考虑到声信号非接触式测量的优势。提出一种参数自适应变分模式分解结合改进多点最优最小熵反褶积(improve multipoint optimal minimum entropy decon... 针对滚动轴承声信号存在较强的背景噪声干扰,微弱故障特征信息难以有效提取等问题,并考虑到声信号非接触式测量的优势。提出一种参数自适应变分模式分解结合改进多点最优最小熵反褶积(improve multipoint optimal minimum entropy deconvolution adjusted, MOMEDA)的复合故障声学诊断方法;采用综合指标解决变分模态分解(variational mode decomposition, VMD)参数自适应选择问题,利用最大加权峭度识别最优分量并重构信号,增强与故障特征相关的脉冲特征信息;结合IMOMEDA方法从重构信号中分离提取周期性的脉冲信号,通过包络解调获取故障特征频率。仿真信号和试验信号验证了该方法的有效性,与传统VMD、MOMEDA、VMD-MCKD(maximum correlation kurtosis deconvolution)方法进行比较,凸显了方法的优越性。 展开更多
关键词 自适应变分模式分解 改进多点最优最小熵反褶积(IMOMEDA) 加权峭度 复合故障 声学诊断
在线阅读 下载PDF
基于MVMD-MOMEDA的齿轮箱故障诊断方法 被引量:3
6
作者 崔素晓 崔彦平 +2 位作者 武哲 吕志元 张琳琳 《河北科技大学学报》 CAS 北大核心 2023年第6期551-561,共11页
针对齿轮箱振动信号受复杂传递路径、强背景噪声的影响导致早期微弱故障难以诊断的问题,提出了一种基于多元变分模态分解(MVMD)和多点最优最小熵反褶积调整(MOMEDA)的齿轮箱故障诊断方法。首先,利用MVMD将融合后的多通道振动信号进行模... 针对齿轮箱振动信号受复杂传递路径、强背景噪声的影响导致早期微弱故障难以诊断的问题,提出了一种基于多元变分模态分解(MVMD)和多点最优最小熵反褶积调整(MOMEDA)的齿轮箱故障诊断方法。首先,利用MVMD将融合后的多通道振动信号进行模态分解,得到一系列表征信号局部特征的IMF分量;其次,引入峭度值(Ku),选取最佳模态进行信号重构,剔除含噪声分量高的IMF;最后,对重构信号进行MOMEDA特征提取以识别故障频率,从而进行故障诊断。结果表明,所提故障诊断方法可以有效剔除噪声分量的干扰,识别出信号中的故障冲击成分及其倍频进而确定故障类型。MVMD-MOMEDA方法解决了在单一通道问题上无法处理多源信号的缺点以及早期微弱故障特征难以提取等问题,可为故障诊断和多源信号处理提供参考。 展开更多
关键词 数据处理 齿轮箱 多元变分模态分解 多点最优最小熵反褶积调整 特征提取 故障诊断
在线阅读 下载PDF
基于MOMEDA和增强倒频谱的风电机组齿轮箱多故障诊断方法 被引量:24
7
作者 胡爱军 严家祥 白泽瑞 《振动与冲击》 EI CSCD 北大核心 2021年第7期268-273,共6页
风电机组齿轮箱结构复杂,当齿轮、轴承存在多故障时,由于各故障强弱不同、故障间相互耦合及噪声干扰,造成故障诊断准确率低及漏诊问题。提出了一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted... 风电机组齿轮箱结构复杂,当齿轮、轴承存在多故障时,由于各故障强弱不同、故障间相互耦合及噪声干扰,造成故障诊断准确率低及漏诊问题。提出了一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)和增强倒频谱的风电机组齿轮箱多故障诊断方法。依据齿轮和轴承不同部位的故障特征频率设置合理的解卷积周期,利用MOMEDA对原始信号进行预处理;再通过增强倒频谱进一步抑制噪声干扰和增强故障特征;将增强倒频谱中的突出成分与齿轮箱故障特征频率对比,判断故障类型。实际风电机组齿轮箱多故障振动试验数据分析结果表明,该方法可以有效地提取出齿轮箱多故障特征信息。 展开更多
关键词 齿轮箱 多故障诊断 特征提取 多点最优最小解卷积(MOMEDA) 增强倒频谱
在线阅读 下载PDF
基于ITD-SVD和MOMEDA的故障特征提取方法
8
作者 杨静宗 杨天晴 吴丽玫 《工业工程》 北大核心 2021年第6期48-56,共9页
为提高滚动轴承故障诊断的准确性,提出一种基于固有时间尺度分解(ITD)、奇异值分解(SVD)和多点最优最小熵反褶积(MOMEDA)相结合的故障特征提取方法。首先,采用ITD分解故障振动信号,并构建基于峭度和相关系数的组合权重指标筛选准则,从... 为提高滚动轴承故障诊断的准确性,提出一种基于固有时间尺度分解(ITD)、奇异值分解(SVD)和多点最优最小熵反褶积(MOMEDA)相结合的故障特征提取方法。首先,采用ITD分解故障振动信号,并构建基于峭度和相关系数的组合权重指标筛选准则,从而完成分量信号的筛选与重构。其次,对其进行SVD滤波降噪。最后,利用MOMEDA提取降噪后信号中的周期性冲击成分,并通过Hilbert包络谱分析得到诊断结果。经过实验数据分析,结果表明所提出的方法不仅能滤除噪声干扰,增强故障特征信息,而且能准确提取出故障特征。 展开更多
关键词 固有时间尺度分解 奇异值分解(SVD) 多点最优最小熵反褶积(MOMEDA) 故障特征提取
在线阅读 下载PDF
基于ACMD与改进MOMEDA的滚动轴承故障诊断 被引量:7
9
作者 石佳 黄宇峰 王锋 《振动与冲击》 EI CSCD 北大核心 2023年第16期218-226,261,共10页
针对强背景噪声下滚动轴承故障特征难以提取的问题,提出基于自适应非线性调频分量分解(adaptive chirp mode decomposition,ACMD)与改进多点优化最小熵解卷积(improved multipoint optimal minimum entropy deconvolution adjusted,IMOM... 针对强背景噪声下滚动轴承故障特征难以提取的问题,提出基于自适应非线性调频分量分解(adaptive chirp mode decomposition,ACMD)与改进多点优化最小熵解卷积(improved multipoint optimal minimum entropy deconvolution adjusted,IMOMEDA)的故障诊断方法。(1)为提高信号信噪比,采用基于基尼系数指标的ACMD,进行信号重构预处理;(2)为提高参数设定的准确性,提出改进的MOMEDA方法——利用天鹰优化算法,以多点峭度最大为目标,寻优确定滤波器周期参数;(3)对信号进行包络谱分析,通过对比包络谱的主导频率成分与理论故障特征频率,判断故障类型。仿真及实测数据分析结果表明,该方法能有效提取强背景噪声下的滚动轴承故障信号的特征信息,具备一定的优越性与实用性。 展开更多
关键词 自适应非线性调频分量分解(ACMD) 基尼系数 天鹰化算法 多点最优调整最小解卷积 滚动轴承 故障诊断
在线阅读 下载PDF
基于MOMEDA和IITD的滚动轴承微弱故障特征提取 被引量:2
10
作者 赵磊 张永祥 朱丹宸 《海军工程大学学报》 CAS 北大核心 2019年第1期57-61,共5页
为了清晰准确地提取出强背景噪声下滚动轴承微弱故障特征,对采集的外圈故障轴承的振动信号用MOMEDA进行信号增强;然后,利用IITD分解得到一系列模态,并对分解得到的模态进行包络解调提取故障特征;最后,进行了故障模拟实验,实验结果表明... 为了清晰准确地提取出强背景噪声下滚动轴承微弱故障特征,对采集的外圈故障轴承的振动信号用MOMEDA进行信号增强;然后,利用IITD分解得到一系列模态,并对分解得到的模态进行包络解调提取故障特征;最后,进行了故障模拟实验,实验结果表明了该方法的有效性。 展开更多
关键词 滚动轴承 自适应多点最优最小解卷积 改进的固有时间尺度分解 特征提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部