期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
多点最优最小熵反褶积结合交互信息的过载信号特征提取
1
作者 谢雨岑 房安琪 +4 位作者 郜王鑫 李彩芳 邵志豪 张珂 唐万杰 《探测与控制学报》 CSCD 北大核心 2024年第5期1-7,共7页
针对弹药超高速侵彻多层建筑物的过程中,侵彻过载加速度信号产生粘连混叠,影响侵彻穿层特征的精准辨识提取,造成引信难以精确计层的问题,提出一种基于多点最优最小熵反褶积(MOMEDA)和交互信息的过载信号穿层特征提取方法。考虑到引信加... 针对弹药超高速侵彻多层建筑物的过程中,侵彻过载加速度信号产生粘连混叠,影响侵彻穿层特征的精准辨识提取,造成引信难以精确计层的问题,提出一种基于多点最优最小熵反褶积(MOMEDA)和交互信息的过载信号穿层特征提取方法。考虑到引信加速度敏感系统在高频强动载下的响应规律未知,该方法利用MOMEDA的非迭代盲解卷积增强技术来实现对原始侵彻过载信号的降噪,基于交互信息理论进一步优化MOMEDA最佳滤波器的长度以增强原始侵彻过载信号中多层目标特征。通过对引信超高速侵彻多层靶板的仿真、试验信号的研究结果表明,该方法可以有效突显原始侵彻过载信号中的穿层特征,为强粘连信号下的引信精确计层功能实现提供依据。 展开更多
关键词 超高速侵彻 多点最优最小褶积 交互信息 特征提取
在线阅读 下载PDF
采用改进多点最优最小熵反褶积的齿轮箱复合故障特征提取 被引量:7
2
作者 王靖岳 李建刚 王浩天 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第5期70-77,94,共9页
针对强背景噪声下齿轮箱复合故障中的微弱故障特征难以提取的问题,提出了一种改进多点最优最小熵反褶积的齿轮箱复合故障特征提取方法。将小波降噪作为前置滤波器,克服了多点峭度谱在强背景噪声下难以有效识别信号中的微弱故障周期成分... 针对强背景噪声下齿轮箱复合故障中的微弱故障特征难以提取的问题,提出了一种改进多点最优最小熵反褶积的齿轮箱复合故障特征提取方法。将小波降噪作为前置滤波器,克服了多点峭度谱在强背景噪声下难以有效识别信号中的微弱故障周期成分的缺点,使信号峭度增加了65.9%,突出了微弱故障周期成分;根据多点峭度谱识别出的故障周期成分设置合理的故障区间,利用多点最优最小熵反褶积突出了信号中的故障周期,避免了对信号直接包络解调而出现的漏诊现象;将差分能量算子解调应用于改进算法处理后的信号,与传统的Hilbert解调方法相比,该算法得到的解调谱中故障特征频率的峰值更加明显。通过对仿真信号与齿轮箱中齿轮点蚀磨损复合故障振动信号的研究结果表明,改进多点最优最小熵反褶积方法能够完整地提取信号中的故障特征频率成分,成功率达到了100%;与变分模态分解进行了对比分析,改进算法有效消除了模态混叠现象。仿真和试验结果表明,改进算法可以有效提取强背景噪声下齿轮箱复合故障中的微弱故障特征。 展开更多
关键词 复合故障 小波降噪 多点最优最小褶积 差分能量算子解调
在线阅读 下载PDF
利用参数自适应多点最优最小熵反褶积的行星轮轴承微弱故障特征提取 被引量:15
3
作者 王朝阁 李宏坤 +2 位作者 胡少梁 胡瑞杰 任学平 《振动工程学报》 EI CSCD 北大核心 2021年第3期633-645,共13页
针对行星轮轴承故障振动信号受复杂传递路径、强背景噪声和齿轮振动干扰的影响,导致故障特征微弱难以提取的问题,提出一种参数自适应的多点最优最小熵反褶积(parameter adaptive multipoint optimal minimum entropy deconvolution adju... 针对行星轮轴承故障振动信号受复杂传递路径、强背景噪声和齿轮振动干扰的影响,导致故障特征微弱难以提取的问题,提出一种参数自适应的多点最优最小熵反褶积(parameter adaptive multipoint optimal minimum entropy deconvolution adjusted,PA-MOMEDA)的行星轮轴承微弱故障诊断方法。为克服MOMEDA依赖人为经验选取主要影响参数的不足,建立多目标优化新指标,通过粒子群算法优良的寻优特性来自动确定最佳的影响参数,使用参数优化的MOMEDA对行星轮轴承故障信号进行最佳解卷积运算。针对MOMEDA解卷积信号存在严重边缘效应的问题,设计一种波形延伸策略对解卷积信号进行自适应补偿,提高了MOMEDA对微弱故障冲击特征的解卷积性能。对提升的解卷积信号进行包络解调处理,即可从其包络谱中提取到明显的故障特征频率。通过行星轮轴承故障仿真和工程实验数据分析表明,相比传统的MOMEDA方法、MCKD方法和快速谱峭度方法,该方法能成功地提取微弱的故障冲击特征且更加明显,提高了行星轮轴承故障诊断的准确性和鲁棒性。 展开更多
关键词 故障诊断 行星齿轮箱 行星轮轴承 特征提取 多点最优最小褶积(MOMEDA)
在线阅读 下载PDF
基于Kalman滤波的信息融合白噪声最优反卷积滤波器 被引量:8
4
作者 邓自立 高媛 +2 位作者 李云 白敬刚 崔崇信 《科学技术与工程》 2004年第3期169-171,175,共4页
应用Kalman滤波方法 ,基于Riccati方程 ,在线性最小方差最优信息融合准则下 ,提出了两传感器最优信息融合白噪声反卷积滤波器。同单传感器情形相比 ,可提高滤波精度。它可应用于石油地震勘探信号处理。一个信息融合Bernoulli
关键词 KALMAN滤波 信息融合白噪声 最优卷积滤波器 线性最小方差信息融合 射地震学
在线阅读 下载PDF
基于非负最小二乘的矢量阵反卷积波束形成方法 被引量:9
5
作者 孙大军 马超 +1 位作者 梅继丹 石文佩 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2019年第7期1217-1223,共7页
针对现有反卷积波束形成方法无法直接适用于矢量阵等具有移变点扩散函数阵列的问题,本文给出了一种利用非负最小二乘法进行矢量阵这种移变模型的反卷积求解方法。推导了矢量阵的广义卷积模型,并在常规矢量阵波束输出、矢量阵点扩散函数... 针对现有反卷积波束形成方法无法直接适用于矢量阵等具有移变点扩散函数阵列的问题,本文给出了一种利用非负最小二乘法进行矢量阵这种移变模型的反卷积求解方法。推导了矢量阵的广义卷积模型,并在常规矢量阵波束输出、矢量阵点扩散函数字典、目标函数之间建立差函数方程组,通过最小化差函数的原则来实现对目标函数的求解,从而实现矢量阵反卷积波束形成处理。本文方法同样适用于其他移变模型阵列反卷积求解。对本文方法与传统波束形成、最小方差无畸变响应和多重信号分类方法在主瓣宽度、旁瓣级和稳健性等方面的性能进行了对比分析。结果表明本文方法在存在阵元位置误差情况下具有更窄的主瓣宽度和更低的主旁瓣比。 展开更多
关键词 矢量阵 卷积波束形成 移变扩散函数 非负最小二乘 高分辨 稳健性
在线阅读 下载PDF
基于盲反卷积和参数化模型的超声参数估计 被引量:6
6
作者 聂昕 郭志福 +2 位作者 何智成 成艾国 汲彦军 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第11期2611-2616,共6页
在超声检测中,往往需要获得传播时间(TOF)、回波个数、中心频率、幅值等全面的信息,来综合评判缺陷的位置、大小和类型。通过建立多回波的卷积模型和参数化模型,给出一种结合最小熵盲反卷积(MED)和期望值最大(EM)算法思想的超声回波参... 在超声检测中,往往需要获得传播时间(TOF)、回波个数、中心频率、幅值等全面的信息,来综合评判缺陷的位置、大小和类型。通过建立多回波的卷积模型和参数化模型,给出一种结合最小熵盲反卷积(MED)和期望值最大(EM)算法思想的超声回波参数估计方法。首先基于卷积模型,采用最小熵反卷积,实现了重叠多回波信号的有效分离;再基于参数化模型和所获取的回波个数,给出了基于期望值最大算法思想的参数估计算法;最终实现了重叠多回波超声信号TOF、回波个数、中心频率、幅值等参数的精确估计。仿真和实验验证了该方法的有效性和优点。 展开更多
关键词 最小卷积 EM算法 参数化模型 参数估计 超声回波
在线阅读 下载PDF
粒子群优化算法求解最优控制点的非均匀有理B样条曲线拟合 被引量:8
7
作者 盖荣丽 高守传 李明霞 《计算机应用》 CSCD 北大核心 2022年第7期2177-2183,共7页
为使参数曲线拟合在压缩数据量的基础上仍能保持较高的精度,提出了一种基于特征点提取、最小二乘法逼近以及粒子群优化算法求解最优控制点的高精度非均匀有理B样条(NURBS)曲线拟合方法。首先,以反曲点和曲率极值点作为筛选依据从所有离... 为使参数曲线拟合在压缩数据量的基础上仍能保持较高的精度,提出了一种基于特征点提取、最小二乘法逼近以及粒子群优化算法求解最优控制点的高精度非均匀有理B样条(NURBS)曲线拟合方法。首先,以反曲点和曲率极值点作为筛选依据从所有离散数据点中提取特征点;然后,将特征点在最小二乘法下逼近,并根据所得线性方程组计算得到初始控制点;最后,以初始控制点的位置坐标构造粒子初始种群,并建立一个衡量离散数据点与拟合曲线误差的适应度函数,且利用粒子群优化算法对初始控制点的位置进行迭代优化,直至达到最大迭代次数为止。在叶片和蝴蝶截面原型上进行的实验验证的结果表明,所提方法使待拟合数据量分别压缩为原来数据量的25/117和120/283,且与以精度高为优势的增加辅助控制点的方法相比,所提方法的拟合精度分别提高了57.1%和22.9%,在已有曲线拟合研究方法中具有较强竞争力。 展开更多
关键词 粒子群化算法 最优控制 最小二乘法 非均匀有理B样条曲线 曲率极值
在线阅读 下载PDF
ITD结合参数优化MOMEDA的滚动轴承故障特征提取 被引量:1
8
作者 刘沛 彭珍瑞 何泽人 《机械科学与技术》 CSCD 北大核心 2024年第6期967-974,共8页
针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOME... 针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)相结合的滚动轴承故障特征提取方法。首先根据包络谱峰值因子最大原则提取包含丰富故障信息的ITD分量,其次对该分量进行MOMEDA降噪处理。对影响MOMEDA滤波效果的两个参数——故障周期T与滤波器长度L分别以多点峭度和平方包络谱的基尼指数进行优化,最后进行包络谱分析提取故障特征频率。通过仿真信号与实测信号分析表明该方法能在强噪声干扰下有效提取故障特征。 展开更多
关键词 固有时间尺度分解 多点最优最小卷积 滚动轴承 包络谱峰值因子 基尼指数
在线阅读 下载PDF
一种改进的解卷积算法及其在滚动轴承复合故障诊断中的应用 被引量:23
9
作者 齐咏生 樊佶 +2 位作者 李永亭 高学金 刘利强 《振动与冲击》 EI CSCD 北大核心 2020年第21期140-150,共11页
针对滚动轴承复合故障振动信号非平稳、非线性特性且不同类型故障之间相互耦合,使得传统方法对复合故障冲击特征难以提取的问题,提出了一种基于自适应信号稀疏共振分解(ARSSD)和多点峭度最优最小熵解卷积修正(MK-MOMEDA)的故障诊断新方... 针对滚动轴承复合故障振动信号非平稳、非线性特性且不同类型故障之间相互耦合,使得传统方法对复合故障冲击特征难以提取的问题,提出了一种基于自适应信号稀疏共振分解(ARSSD)和多点峭度最优最小熵解卷积修正(MK-MOMEDA)的故障诊断新方法。使用ARSSD分析故障信号,并定义一个新的复合指标作为目标函数,利用布谷鸟寻优算法(CSA)对高、低品质因子进行优化选择,获得包含瞬态冲击成分的最优低共振分量;计算其多点峭度谱,提取低共振分量中包含的故障冲击周期成分;之后设定适当的周期区间,进行解卷积运算分离不同的故障特征;通过包络解调,分析谱图中突出的故障特征频率进而识别故障类型。实验平台模拟了滚动轴承两种和三种故障的复合情况,并对所提算法进行了验证,结果表明该方法可有效的从复合故障中提取出各类故障特征,实现故障诊断。 展开更多
关键词 振动信号 复合故障 故障诊断 RSSD 最优最小卷积修正
在线阅读 下载PDF
RSK-MOMEDA与PF在滚动轴承故障预测中的应用
10
作者 赵英杰 傅子霞 沈建 《机械设计与制造》 北大核心 2025年第6期40-45,共6页
针对滚动轴承故障预测起始点确定困难以及故障预测结果不科学的问题,深入开展滚动轴承故障预测方法研究,提出了基于快速谱峭度-多点最优最小熵解卷积(Rapid Spectral Kurtosis and Multipoint Optimal Minimum Entropy Deconvolution Ad... 针对滚动轴承故障预测起始点确定困难以及故障预测结果不科学的问题,深入开展滚动轴承故障预测方法研究,提出了基于快速谱峭度-多点最优最小熵解卷积(Rapid Spectral Kurtosis and Multipoint Optimal Minimum Entropy Deconvolution Adjusted,简称RSK-MOMEDA)与粒子滤波(Particle Filter,简称PF)的滚动轴承故障预测方法。通过RSK-MOMEDA方法实现轴承早期故障特征增强,进而挖掘出滚动轴承全寿命退化数据中的早期故障发生节点,从而为后续故障预测起始点的确定提供科学依据;基于PF方法的概率统计特性,开展滚动轴承故障预测并给出置信区间下的故障预测结果,有效提升滚动轴承故障预测的置信度,为工程实际提供一种有益故障预测参考方法。 展开更多
关键词 滚动轴承 早期故障诊断 快速谱峭度-多点最优最小卷积 粒子滤波 故障预测
在线阅读 下载PDF
基于AVME-OMOMEDA的滚动轴承复合故障诊断
11
作者 刘志军 周俊 +1 位作者 伍星 刘韬 《振动工程学报》 北大核心 2025年第9期2130-2140,共11页
传统算法难以有效分离提取共振频带重叠的轴承复合故障特征,本文提出一种结合自适应变分模态提取(adaptive variational mode extraction,AVME)与优化多点最优最小熵反褶积(optimized multipoint optimal minimum entropy deconvolution... 传统算法难以有效分离提取共振频带重叠的轴承复合故障特征,本文提出一种结合自适应变分模态提取(adaptive variational mode extraction,AVME)与优化多点最优最小熵反褶积(optimized multipoint optimal minimum entropy deconvolution adjusted,OMOMEDA)的自适应滚动轴承复合故障特征分离提取方法。利用S变换谱自相关能量谱确定VME参数中心频率的初始值,提取出与故障相关的期望模态;将期望模态进行线性叠加重构原信号,实现对信号的降噪;利用OMOMEDA从重构信号中提取周期性脉冲信号,结合包络解调获取故障特征频率。仿真信号和试验信号验证了该方法能有效分离提取共振频带重叠的轴承复合故障特征,并与VMD-MCKD等其他4种已有算法进行比较,证明了所提方法的优越性。 展开更多
关键词 故障诊断 滚动轴承 自适应变分模态提取 多点最优最小褶积 S变换谱自相关能量谱
在线阅读 下载PDF
基于稀疏引导IEWT-MOMEDA的行星齿轮箱微弱故障检测
12
作者 王子博 李宏坤 +2 位作者 张孔亮 曹顺心 孙福彪 《振动.测试与诊断》 北大核心 2025年第5期961-968,1064,共9页
行星齿轮箱出现早期故障时,由于工业环境的背景噪声干扰和故障冲击在复杂传递路径中衰减,其微弱故障特征难以有效提取和识别。针对此问题,提出了稀疏引导的改进经验小波变换(improved empirical wavelet transform,简称IEWT)结合多点最... 行星齿轮箱出现早期故障时,由于工业环境的背景噪声干扰和故障冲击在复杂传递路径中衰减,其微弱故障特征难以有效提取和识别。针对此问题,提出了稀疏引导的改进经验小波变换(improved empirical wavelet transform,简称IEWT)结合多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,简称MOMEDA)的微弱故障特征提取方法。首先,提出了一种新的故障综合指标(fault composite index,简称FCI),结合信号频谱的幅值包络线将原始信号自适应分解为一组IEWT分量;其次,通过稀疏引导方法选出敏感分量作为原始微弱故障信号的稀疏表示;最后,对敏感分量信号进行MOMEDA处理,降低信号噪声并提取微弱信号故障特征频率用于检测。仿真和实验结果表明,所提方法对含有噪声的非平稳非线性行星齿轮箱故障信号有良好的诊断效果,验证了该方法的有效性,为工程实践中行星齿轮箱弱故障的诊断和检测提供了一种方法。 展开更多
关键词 行星齿轮箱 经验小波变换 多点最优最小卷积 稀疏引导 微弱故障诊断
在线阅读 下载PDF
联合CEF-MOMEDA的风机高速端轴承潜隐性故障敏感信息提取方法
13
作者 蔡敏 张强 +2 位作者 秦波 张海平 罗权毅 《机电工程》 北大核心 2025年第8期1428-1439,共12页
在大数据驱动的MW级半直驱风电机组滚动轴承服役期的状态智能辨识中,针对输入样本“质量差”致使所构建模型识别率低这一问题,提出了一种联合相关能量波动(CEF)评价准则与多点最优最小熵解卷积(MOMEDA)的潜隐性故障敏感信息提取方法。首... 在大数据驱动的MW级半直驱风电机组滚动轴承服役期的状态智能辨识中,针对输入样本“质量差”致使所构建模型识别率低这一问题,提出了一种联合相关能量波动(CEF)评价准则与多点最优最小熵解卷积(MOMEDA)的潜隐性故障敏感信息提取方法。首先,将拾取的振动数据由变分模态分解为若干个表征原数据不同成分的本征模分量;然后,根据上述分量能量的变化,量化、评估所包含的潜隐性故障占比,筛选并提取敏感成分后对故障信号进行了重构;接着,利用多点最优最小熵解卷积对重构后的数据进行了有效成分增强提取;最后,将上述能量波动评价准则与多点最优最小熵解卷积联合提取的敏感信息数据作为深度置信网络(DBN)的输入,构建了滚动轴承状态智能辨识模型,采用现场实验与凯斯西储大学(CWRU)数据集对CEF-MOMEDA的方法进行了验证。研究结果表明:基于CEF-MOMEDA-DBN的模型在风机滚动轴承诊断中的故障识别率更高;在凯斯西储大学数据集上,与集合经验模态分解(EEMD)、局部均值分解(LMD)相比,CEF-MOMEDA方法联合能量波动准则提取敏感信息数据并作为智能辨识模型的输入后,故障识别率分别提高了2.5%和1.25%。该方法能够有效提高故障识别的准确率,具有更强的实用性和泛化性。 展开更多
关键词 MW级半直驱风电机组 滚动轴承故障诊断 敏感成分联合提取 相关能量波动 多点最优最小卷积 深度置信网络 集合经验模态分解 局部均值分解
在线阅读 下载PDF
并行RSSD和改进MOMEDA的齿轮箱故障诊断 被引量:2
14
作者 尹志安 孙文龙 王凯 《机械设计与制造》 北大核心 2024年第9期196-204,共9页
为了克服传统共振稀疏信号分解与矩量法的局限性,提高其提取微弱故障特征的能力,提出了一种并行双参数优化RSSD和改进MOMEDA的行星齿轮箱故障诊断方法。首先,并行双参数优化RSSD构造了与不同故障特征相匹配的小波基函数,并将复合故障信... 为了克服传统共振稀疏信号分解与矩量法的局限性,提高其提取微弱故障特征的能力,提出了一种并行双参数优化RSSD和改进MOMEDA的行星齿轮箱故障诊断方法。首先,并行双参数优化RSSD构造了与不同故障特征相匹配的小波基函数,并将复合故障信号自适应分解为不同的谐振分量,实现了复杂故障特征的解耦。其次,利用改进MOMEDA对共振分量进行去卷积滤波,有效地消除了复杂传输路径和强环境噪声的影响,增强了与弱故障相关的脉冲。最后,通过对行星齿轮箱实验平台的实际故障信号的分析,证明了提出的方法不仅具有良好的解耦性能以及提取弱故障信号能力,且能够全面、准确地提取不同类型的故障。 展开更多
关键词 共振稀疏信号分解 多点最优最小褶积 行星齿轮箱 故障诊断
在线阅读 下载PDF
应用CEEMD降噪与自适应MOMEDA的轴承故障特征提取方法 被引量:3
15
作者 宋宇博 张宇飞 《中国测试》 CAS 北大核心 2024年第2期180-188,共9页
针对滚动轴承早期故障信号中冲击成分能量低且易被强烈的背景噪声所淹没的问题,该文提出一种基于互补集合经验模态分解(complete ensemble empirical mode decomposition,CEEMD)-小波阈值降噪和参数自适应多点最优最小熵解卷积(multipoi... 针对滚动轴承早期故障信号中冲击成分能量低且易被强烈的背景噪声所淹没的问题,该文提出一种基于互补集合经验模态分解(complete ensemble empirical mode decomposition,CEEMD)-小波阈值降噪和参数自适应多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)的滚动轴承故障特征提取方法。将CEEMD与小波阈值降噪结合对原始信号进行降噪;提出一种新的复合指标:峭度-包络波形因子,并以其为适应度函数设计变步长搜索法,对MOMEDA算法的滤波器长度进行寻优;基于寻优的滤波器长度对降噪的信号进行MOMEDA解卷积,并通过包络谱分析识别滚动轴承的故障特征频率。对比实验结果表明:以该文寻找的最优滤波器长度作为MOMEDA的参数,解卷积后包络谱故障频率更加清晰;且相较于传统的MOMEDA算法和小波阈值降噪-MOMEDA方法,该文提出的方法能够更有效地提取强噪声背景下微弱的故障特征信息。 展开更多
关键词 滚动轴承 故障诊断 多点最优最小卷积 互补集合经验模态分解 小波阈值降噪
在线阅读 下载PDF
基于ASMVMD和MOMEDA的齿轮特征提取方法 被引量:1
16
作者 唐贵基 曾鹏飞 朱爽 《机电工程》 CAS 北大核心 2024年第12期2174-2184,共11页
针对齿轮信号易被强噪声干扰,导致损伤特征难以提取的问题,提出了一种基于自适应逐次多元变分模态分解(ASMVMD)和多点最优最小熵解卷积(MOMEDA)的齿轮故障特征提取方法。首先,采用加权黑猩猩优化算法对SMVMD分解参数进行了自适应寻优,以... 针对齿轮信号易被强噪声干扰,导致损伤特征难以提取的问题,提出了一种基于自适应逐次多元变分模态分解(ASMVMD)和多点最优最小熵解卷积(MOMEDA)的齿轮故障特征提取方法。首先,采用加权黑猩猩优化算法对SMVMD分解参数进行了自适应寻优,以SMVMD分解后各个通道的所有分量的平均包络谱峰值因子(Ec)之和的相反数作为寻优的适应度函数,确定了最大惩罚因子α和最大分解模态数k的最优值;然后,采用ASMVMD方法对齿轮多通道故障数据进行了自适应分解,根据Ec指标提取了各通道特定分量,并将这些分量相加,进行了信号重构;最后,采用MOMEDA解卷积处理了重构信号,进一步强化了齿轮故障的冲击特性,并利用包络谱分析解卷积信号,提取了齿轮的故障特征频率。研究结果表明:通过仿真信号和模拟实验信号的分析,可知利用ASMVMD-MOMEDA相结合的方法处理得到的信号降噪效果显著,能有效抑制无关干扰成分的影响,从包络谱中可以清晰地看到故障频率的前几阶倍频;与多元经验模态分解(MEMD)-MOMEDA相结合的方法进行对比,发现采用ASMVMD-MOMEDA方法得到的包络谱较MEMD-MOMEDA方法的谱线更加干净,各阶倍频更加明显,进一步证明ASMVMD-MOMEDA方法可以准确提取齿轮故障特征。 展开更多
关键词 齿轮损伤特征 故障特征提取 自适应逐次多元变分模态分解 多点最优最小卷积 多通道 卷积 包络谱峰值因子 信号重构
在线阅读 下载PDF
基于迭代SGMD与改进MOMEDA的滚动轴承微弱故障诊断 被引量:2
17
作者 王富珂 高丙朋 蔡鑫 《组合机床与自动化加工技术》 北大核心 2024年第12期145-150,157,共7页
针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭... 针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭度谱确定MOMEDA的故障周期,利用白鹭群优化算法(ESOA)对滤波器长度进行自适应寻优,通过IMOMEDA对最优分量进行解卷积处理;最后,对解卷积处理后的信号进行包络谱分析,提取故障特征频率完成故障诊断。仿真及实验分析结果表明,所提方法能有效提取强背景噪声下的滚动轴承微弱故障特征信息。 展开更多
关键词 滚动轴承 迭代辛几何模态分解 改进多点最优最小卷积调整 综合指标 白鹭群化算法 故障诊断
在线阅读 下载PDF
基于SVD和MED的滚动轴承特征提取 被引量:4
18
作者 何泽人 彭珍瑞 《控制工程》 CSCD 北大核心 2024年第5期884-890,共7页
针对滚动轴承振动信号易受噪声影响,难以提取故障特征信息的问题,提出一种奇异值分解(singular value decomposition,SVD)重构结合最小熵反卷积(minimum entropy deconvolution,MED)增强的滚动轴承故障特征提取方法。首先,对振动信号进... 针对滚动轴承振动信号易受噪声影响,难以提取故障特征信息的问题,提出一种奇异值分解(singular value decomposition,SVD)重构结合最小熵反卷积(minimum entropy deconvolution,MED)增强的滚动轴承故障特征提取方法。首先,对振动信号进行SVD分解,并计算奇异分量(singular component,SC)对应线性峭度(L-kurtosis)值;其次,根据线性峭度值结合设定阈值筛选SC,叠加得到重构信号;随后,对重构信号利用MED进行增强,凸出信号中周期冲击成分;最后,结合包络解调提取故障特征频率。仿真信号及实测信号分析结果表明,该方法可以降低噪声对振动信号的影响且凸显故障的特征信息,实现故障诊断。 展开更多
关键词 奇异值分解 最小卷积 线性峭度 故障特征提取
在线阅读 下载PDF
基于特征增强与LSTM的滚动轴承故障诊断方法 被引量:1
19
作者 惠兴胜 于树坤 +2 位作者 纪威 刘士彩 孙波 《机床与液压》 北大核心 2024年第24期214-227,共14页
滚动轴承的工作环境复杂多变,传统的信号处理技术难以在噪声和其他部件的干扰下检测到微弱的早期故障特征,且传统的故障诊断方法对人工提取特征较为依赖。针对以上问题,提出基于自适应局部迭代滤波(ALIF)和改进差分进化粒子群优化的多... 滚动轴承的工作环境复杂多变,传统的信号处理技术难以在噪声和其他部件的干扰下检测到微弱的早期故障特征,且传统的故障诊断方法对人工提取特征较为依赖。针对以上问题,提出基于自适应局部迭代滤波(ALIF)和改进差分进化粒子群优化的多点优化最小熵解卷积(IDEPSO-MOMEDA)算法,对滚动轴承的故障冲击成分进行增强。利用ALIF分解信号,根据峭度-相关系数准则对分解的信号进行重构;利用IDEPSO对MOMEDA进行参数寻优,对重构后的信号进行冲击增强;最后,利用长短时记忆网络(LSTM)对滚动轴承实现端到端的智能故障诊断,以解决人工提取特征的不足。通过滚动轴承实验数据验证了该方法的有效性,并与LSTM、ALIF-LSTM、ALIF-IDEPSO-MOMEDA-RNN、ALIF-IDEPSO-MOMEDA-DBN进行对比分析,使用所提方法ALIF-IDEPSO-MOMEDA-LSTM的故障诊断准确率可达99.78%,进一步证明了该方法的优越性。 展开更多
关键词 滚动轴承 自适应局部迭代滤波(ALIF) 多点最小卷积 长短时记忆网络(LSTM) 故障诊断
在线阅读 下载PDF
基于IEWT-MOMEDA-FSC的滚动轴承故障诊断 被引量:2
20
作者 吴振雄 王林军 +2 位作者 邹腾枭 陈梦华 陈保家 《三峡大学学报(自然科学版)》 北大核心 2024年第1期92-98,共7页
针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,... 针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,通过增强包络谱的极值点来自适应地划分频谱,以分割的频谱为边界构建小波滤波器组将信号分解为多个IMF分量,利用相关峭度准则筛选出有效的分量进行叠加;其次,用MOMEDA对其进行降噪处理,将降噪后的信号进行快速谱相关分析,得到增强包络谱图;最后,将增强包络谱图中幅值较高的频率与故障频率对比,判定其失效形式,用所提出的方法对实测轴承故障信号进行分析验证.结果表明,所提出的方法能有效降低噪音干扰且增强信号故障冲击特性,在噪声环境下具有较强的故障特征提取能力. 展开更多
关键词 改进经验小波变换 多点最优最小卷积 快速谱相关 峭度 互相关
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部