期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
基于多源迁移学习的变位姿刀尖点模态参数预测
1
作者 沈泽东 刘旭 +1 位作者 陈耿祥 陈璐 《航空制造技术》 CSCD 北大核心 2024年第5期103-109,共7页
切削颤振会导致被加工工件表面质量变差、材料去除率降低以及刀具磨损增加等问题。刀尖点模态参数是构建稳定性叶瓣图、选取无颤振加工参数必不可少的输入。然而在加工过程中刀尖点模态参数随刀具位姿而变化且刀具更换频繁,经典锤击试... 切削颤振会导致被加工工件表面质量变差、材料去除率降低以及刀具磨损增加等问题。刀尖点模态参数是构建稳定性叶瓣图、选取无颤振加工参数必不可少的输入。然而在加工过程中刀尖点模态参数随刀具位姿而变化且刀具更换频繁,经典锤击试验方法效率低、成本高,如何准确高效地预测变位姿下的刀尖模态参数成为切削加工中亟待解决的问题。本文结合迁移学习思想,提出一种基于多源迁移学习的变位姿刀尖点模态参数预测方法。当更换新刀具后,仅需通过锤击试验获取少量位姿下的刀尖点模态参数,再结合已有多把刀具的模态参数数据进行多源迁移得到新刀具的刀尖点模态参数预测模型。最后,在实际五轴机床上进行试验,试验表明所提方法是有效的。 展开更多
关键词 数据驱动 切削颤振 锤击试验 模态参数 多源迁移学习
在线阅读 下载PDF
基于shapelets时间序列的多源迁移学习滚动轴承故障诊断方法 被引量:7
2
作者 李可 燕晗 +3 位作者 顾杰斐 宿磊 苏文胜 薛志钢 《中国机械工程》 EI CAS CSCD 北大核心 2022年第24期2990-2996,3006,共8页
针对滚动轴承故障诊断在工程实际中故障数据稀缺的问题,提出一种基于shapelets时间序列的多源迁移学习滚动轴承故障诊断方法。首先利用典型故障信息丰富、标记样本充足的滚动轴承数据构建多源域数据集,使用不同源域的数据对源域特征提... 针对滚动轴承故障诊断在工程实际中故障数据稀缺的问题,提出一种基于shapelets时间序列的多源迁移学习滚动轴承故障诊断方法。首先利用典型故障信息丰富、标记样本充足的滚动轴承数据构建多源域数据集,使用不同源域的数据对源域特征提取器与分类器进行预训练;然后利用基于动态时间规整的shapelets学习算法提取源域与目标域的shapelets作为判别结构,通过度量判别结构优化源域数据,对源域网络进行微调以得到诊断模型;最后根据每个源域与目标域的shapelets之间的差异,利用自适应域权重对各分类器的结果进行聚合得出诊断结果。实验结果表明,该方法在小样本与强噪声的情况下具有较高的故障诊断准确率。 展开更多
关键词 滚动轴承 故障诊断 shapelets时间序列 多源迁移学习
在线阅读 下载PDF
基于相似度的神经网络多源迁移学习算法 被引量:4
3
作者 张文田 凌卫新 《科学技术与工程》 北大核心 2019年第15期186-191,共6页
为了解决迁移学习中的"负迁移"问题,提出了基于相似度的神经网络多源迁移学习算法。该算法是以经典的BP神经网络模型为基分类器,利用梯度下降法对各个源领域与目标域之间的相似度进行学习和优化,把各个源领域的网络权重参数... 为了解决迁移学习中的"负迁移"问题,提出了基于相似度的神经网络多源迁移学习算法。该算法是以经典的BP神经网络模型为基分类器,利用梯度下降法对各个源领域与目标域之间的相似度进行学习和优化,把各个源领域的网络权重参数信息按照与目标域之间的相似程度迁移到目标域中,提高机器学习算法在目标域的分类性能。在UCI数据的Letter-recognition数据集以及20Newsgroups文本数据集上进行实验。实验结果表明了MTL-SNN算法比传统的多源迁移学习算法以及BP神经网络算法在分类准确率上有所提升,因此MTL-SNN算法有效地解决了"负迁移"问题。 展开更多
关键词 迁移 相似度 多源迁移学习 BP神经网络
在线阅读 下载PDF
基于动态策略的多源迁移学习数据流分类研究
4
作者 周胜 刘三民 《计算机工程》 CAS CSCD 北大核心 2020年第5期139-143,149,共6页
为解决数据流分类中的概念漂移和噪声问题,提出一种基于样本确定性的多源迁移学习方法。该方法存储多源领域上由训练得到的分类器,求出各源领域分类器对目标领域数据块中每个样本的类别后验概率和样本确定性值。在此基础上,将样本确定... 为解决数据流分类中的概念漂移和噪声问题,提出一种基于样本确定性的多源迁移学习方法。该方法存储多源领域上由训练得到的分类器,求出各源领域分类器对目标领域数据块中每个样本的类别后验概率和样本确定性值。在此基础上,将样本确定性值满足当前阈值限制的源领域分类器与目标领域分类器进行在线集成,从而将多个源领域的知识迁移到目标领域。实验结果表明,该方法能够有效消除噪声数据流给不确定分类器带来的不利影响,与基于准确率选择集成的多源迁移学习方法相比,具有更高的分类准确率和抗噪稳定性。 展开更多
关键词 数据流分类 多源迁移学习 类别后验概率 样本确定性 集成学习
在线阅读 下载PDF
多源域迁移学习的肌电-惯性特征融合及手势识别 被引量:1
5
作者 谢平 赵连洋 +3 位作者 张艺滢 徐猛 江国乾 陈杰 《电子测量与仪器学报》 CSCD 北大核心 2024年第7期187-195,共9页
在跨用户手势识别研究中,针对单源域迁移学习存在的负迁移和模型泛化性能差的问题,本研究创新性地提出了一种基于肌电-惯性特征融合的多源域迁移学习策略,关键创新点在于整合多个源域的数据,并在此基础上采用域特有特征对齐与域分类器... 在跨用户手势识别研究中,针对单源域迁移学习存在的负迁移和模型泛化性能差的问题,本研究创新性地提出了一种基于肌电-惯性特征融合的多源域迁移学习策略,关键创新点在于整合多个源域的数据,并在此基础上采用域特有特征对齐与域分类器对齐的技术手段。这一方法旨在强化模型在不同用户间的手势识别性能,进而显著提升跨用户手势识别系统的准确性。首先,引入长短时记忆(long short-term memory, LSTM)网络模型,提取肌电-惯性信息的平均绝对值、方差、峰值等时序特征;其次进行域特有特征对齐与域分类器对齐,利用多个源域数据完成对目标域的特征提取;最后融合分类损失、域特有特征差异损失和域分类器差异损失3个损失函数,协同优化整体损失。实验结果表明,所提方法与单源域、源域组合等多种传统方法相比,识别平均率有所提高,在NinaPro DB5数据集上,目标用户的手势识别平均准确率达到80%以上。 展开更多
关键词 肌电-惯性信号 跨用户手势识别 多源迁移学习 长短时记忆网络 特征对齐
在线阅读 下载PDF
基于多源域迁移学习的带式输送机剩余寿命预测方法 被引量:1
6
作者 高新勤 杨学琦 郑海洋 《中国机械工程》 EI CAS CSCD 北大核心 2024年第8期1435-1448,共14页
煤矿开采过程中,带式输送机运行环境恶劣、工况复杂,致使获得的传感监测数据量有限且存在大量噪声干扰,严重限制了其剩余寿命预测的准确度。针对该问题,提出了一种多源域迁移学习剩余寿命预测方法,充分利用煤矿运输过程中积累的带式输... 煤矿开采过程中,带式输送机运行环境恶劣、工况复杂,致使获得的传感监测数据量有限且存在大量噪声干扰,严重限制了其剩余寿命预测的准确度。针对该问题,提出了一种多源域迁移学习剩余寿命预测方法,充分利用煤矿运输过程中积累的带式输送机多工况数据,以达到准确预测其关键零部件托辊轴承剩余寿命的目的。首先构建集成多尺度卷积神经网络和双向门控循环单元(MCNN-BiGRU)的设备退化特征提取模型,对单工况数据进行特征提取挖掘,并使用PSO算法确定模型超参数。在此基础上,加入多源域迁移学习(MDT)方法,利用多个工况数据进行剩余寿命预测,通过最大均值差异(MMD)与相互关系对齐(CORAL)联合损失拉近各源域数据分布差异,解决因数据量少导致的模型训练精度不高的问题。最后以煤矿实际生产数据集为例进行实验,结果表明:MDT-MCNN-BiGRU模型的预测效果较好,Savitzky-Golay滤波去噪后模型性能得以进一步提升;使用IMS数据集与现有方法进行比较,发现所提方法预测准确度较高,对煤矿运输设备健康管理具有一定的指导意义。 展开更多
关键词 带式输送机 剩余寿命预测 多工况 特征提取 多源迁移学习
在线阅读 下载PDF
基于特征解纠缠和联合域对齐的滚动轴承多源域迁移诊断方法
7
作者 邹松 董绍江 +1 位作者 夏宗佑 牟小燕 《振动与冲击》 北大核心 2025年第1期113-120,133,共9页
针对变工况环境下采集到的滚动轴承振动数据特征分布不一致及待诊断样本标签难获取,导致轴承故障难诊断的问题,提出一种基于特征解纠缠和联合域对齐的滚动轴承多源域迁移诊断方法。首先,为更好提取源域和目标域的通用特征,利用卷积自编... 针对变工况环境下采集到的滚动轴承振动数据特征分布不一致及待诊断样本标签难获取,导致轴承故障难诊断的问题,提出一种基于特征解纠缠和联合域对齐的滚动轴承多源域迁移诊断方法。首先,为更好提取源域和目标域的通用特征,利用卷积自编码器和正交约束实现域共享特征和域私有特征的解纠缠,筛除域私有特征并保留域共享特征进行域间对齐;其次,为缩小源域与目标域间的特征分布差异,采用多核最大均值差异(multiple kernel maximum mean discrepancy,MK-MMD)和相关对齐(correlation alignment,CORAL)方法构建融合度量准则;最后,为避免多源域差异带来的负面影响导致诊断精度下降的问题,采用源对抗模块和迁移对抗模块实现源域间及源域与目标域间的域混淆增强,并采用协同决策方式进行特征加权融合,降低弱相关域特征的干扰,实现最终的故障诊断识别。通过两种跨工况下的滚动轴承故障数据集对所提方法开展试验验证,并与单源域诊断方法及其它多源域诊断方法进行了对比分析,证明了所提方法的有效性和优越性。 展开更多
关键词 故障诊断 多源迁移学习 特征解纠缠 联合域对齐
在线阅读 下载PDF
基于共同决策方向矢量的多源迁移及其快速学习方法 被引量:4
8
作者 张景祥 王士同 《电子学报》 EI CAS CSCD 北大核心 2015年第7期1349-1355,共7页
多源迁移学习提取了多个相似领域之间有用信息,提高了学习效率,但存在计算核矩阵的空间和时间复杂度较高的问题.提出了一种多源迁移学习方法,该方法基于结构风险最小框架理论,以共同决策方向矢量为基准,将多个相似领域的决策方向矢量嵌... 多源迁移学习提取了多个相似领域之间有用信息,提高了学习效率,但存在计算核矩阵的空间和时间复杂度较高的问题.提出了一种多源迁移学习方法,该方法基于结构风险最小框架理论,以共同决策方向矢量为基准,将多个相似领域的决策方向矢量嵌入到支持向量机的训练过程中,提高了目标领域分类器的分类性能.并结合核心向量机理论提出了共同决策方向矢量核心向量机,实现对大样本数据集的快速分类学习.模拟和真实数据集实验表明了所提算法的有效性. 展开更多
关键词 共同决策矢量 多源迁移学习 分类 核心集向量机
在线阅读 下载PDF
概念漂移数据流分类中的多源在线迁移学习算法 被引量:3
9
作者 秦一休 文益民 何倩 《计算机科学》 CSCD 北大核心 2019年第1期64-72,共9页
现有概念漂移处理算法在检测到概念漂移发生后,通常需要在新到概念上重新训练分类器,同时"遗忘"以往训练的分类器。在概念漂移发生初期,由于能够获取到的属于新到概念的样本较少,导致新建的分类器在短时间内无法得到充分训练... 现有概念漂移处理算法在检测到概念漂移发生后,通常需要在新到概念上重新训练分类器,同时"遗忘"以往训练的分类器。在概念漂移发生初期,由于能够获取到的属于新到概念的样本较少,导致新建的分类器在短时间内无法得到充分训练,分类性能通常较差。进一步,现有的基于在线迁移学习的数据流分类算法仅能使用单个分类器的知识辅助新到概念进行学习,在历史概念与新到概念相似性较差时,分类模型的分类准确率不理想。针对以上问题,文中提出一种能够利用多个历史分类器知识的数据流分类算法——CMOL。CMOL算法采取分类器权重动态调节机制,根据分类器的权重对分类器池进行更新,使得分类器池能够尽可能地包含更多的概念。实验表明,相较于其他相关算法,CMOL算法能够在概念漂移发生时更快地适应新到概念,显示出更高的分类准确率。 展开更多
关键词 多源迁移学习 在线学习 概念漂移 数据流分类
在线阅读 下载PDF
对不平衡目标域的多源在线迁移学习 被引量:3
10
作者 周晶雨 王士同 《智能系统学报》 CSCD 北大核心 2022年第2期248-256,共9页
多源在线迁移学习已经广泛地应用于相关源域中含有大量的标记数据且目标域中数据以数据流的形式达到的应用中。然而,目标域的类别分布有时是不平衡的,针对目标域每次以在线方式到达多个数据的不平衡二分类问题,本文提出了一种可以对目... 多源在线迁移学习已经广泛地应用于相关源域中含有大量的标记数据且目标域中数据以数据流的形式达到的应用中。然而,目标域的类别分布有时是不平衡的,针对目标域每次以在线方式到达多个数据的不平衡二分类问题,本文提出了一种可以对目标域样本过采样的多源在线迁移学习算法。该算法从前面批次的样本中寻找当前批次的样本的k近邻,先少量生成多数类样本,再生成少数类使得当前批次样本的类别分布平衡。每个批次合成样本和真实样本一同训练目标域函数,从而提升目标域函数的分类性能。同时,分别设计了在目标域的输入空间和特征空间过采样的方法,并且在多个真实世界数据集上进行了综合实验,证明了所提出算法的有效性。 展开更多
关键词 多源迁移学习 在线学习 目标域 不平衡数据 过采样 K近邻 输入空间 特征空间
在线阅读 下载PDF
对不平衡数据的多源在线迁移学习算法 被引量:3
11
作者 周晶雨 王士同 《计算机科学与探索》 CSCD 北大核心 2023年第3期687-700,共14页
多源在线迁移学习利用多个源域的标记数据来增强目标域的分类性能,针对不平衡的数据集,提出一种可以在源域和目标域的特征空间中过采样的多源在线迁移学习算法。该算法包含两部分:对多个源域过采样和对在线的目标域过采样。对源域过采... 多源在线迁移学习利用多个源域的标记数据来增强目标域的分类性能,针对不平衡的数据集,提出一种可以在源域和目标域的特征空间中过采样的多源在线迁移学习算法。该算法包含两部分:对多个源域过采样和对在线的目标域过采样。对源域过采样阶段,在支持向量机(SVM)的特征空间中过采样来生成少数类样本,新的样本是通过在源域特征空间中的邻域信息来扩增原始的Gram矩阵得到的。对在线的目标域过采样阶段,目标域的样本分批次到达,当前批次的少数类样本从前面已经到达的多个批次中寻找特征空间中的k近邻,利用生成的新样本和当前批次中的原始样本一同训练目标域函数。通过核函数将源域和目标域的样本映射到同一特征空间中进行过采样,使用类别分布相对平衡的源域和目标域数据训练相应的决策函数,从而提升算法的整体性能。在四个真实数据集上进行了全面的实验,在Office-Home数据集的任务上相较其他基线算法,准确率提升了0.0311,G-mean值提升了0.0702。 展开更多
关键词 多源迁移学习 在线学习 不平衡数据 特征空间 支持向量机(SVM) K近邻 核函数
在线阅读 下载PDF
基于多源域深度迁移学习的机械故障诊断 被引量:18
12
作者 杨胜康 孔宪光 +2 位作者 王奇斌 程涵 李中权 《振动与冲击》 EI CSCD 北大核心 2022年第9期32-40,共9页
针对不同工况下的机械故障诊断问题,迁移学习方法相比于深度学习具有明显的成效,单源域迁移故障诊断仍会出现负迁移和模型泛化能力差的问题。因此,本文提出一种基于多源域深度迁移学习的机械故障诊断方法。首先,进行锚适配器的构建,获... 针对不同工况下的机械故障诊断问题,迁移学习方法相比于深度学习具有明显的成效,单源域迁移故障诊断仍会出现负迁移和模型泛化能力差的问题。因此,本文提出一种基于多源域深度迁移学习的机械故障诊断方法。首先,进行锚适配器的构建,获得多源域-目标域适配器数据对。其次,建立基于深度域适应的迁移学习网络模型获得每个数据对的分类器与预测结果。最后,采用加权集成的方式进行分类器集成,用于最终的故障诊断识别。所提方法充分集成多源域故障特征信息,提取域不变特征,避免负迁移的问题,提高模型的泛化能力。通过一个滚动轴承数据来验证提出方法的性能,结果表明,多工况迁移故障诊断分类精度明显高于其中任意单一工况迁移,最高可提高8.78%,与其他方法相比,所提方法具有较好的精度和泛化能力。 展开更多
关键词 故障诊断 多源迁移学习 锚适配器集成 深度神经网络
在线阅读 下载PDF
基于多源域深度迁移学习的舵机在线故障诊断 被引量:5
13
作者 吕丞辉 程进军 +2 位作者 胡阳光 文斌成 李剑峰 《兵器装备工程学报》 CAS CSCD 北大核心 2022年第9期60-67,共8页
针对航空武器不同舵机轴承在不同负载力矩下呈现特征数据与工作状态映射关系难以定量表达,开展未知领域的状态识别是一条可行的技术路线;引入多源域深度迁移学习的思想,提出具有多核MMD的MSFAN故障诊断方法。采用傅里叶变换提取不同域... 针对航空武器不同舵机轴承在不同负载力矩下呈现特征数据与工作状态映射关系难以定量表达,开展未知领域的状态识别是一条可行的技术路线;引入多源域深度迁移学习的思想,提出具有多核MMD的MSFAN故障诊断方法。采用傅里叶变换提取不同域原始数据的时频域特征,通过多核MMD距离度量方式减小源域和目标域之间的特征分布差异;利用特定域分类器降低不同域对目标样本在类边界附近的分类损失,提高模型在目标域中的分类精度。试验分别采用公开轴承数据集作为源域数据,使用该方法对目标域数据进行状态识别,与Alxnet、Rexnet18等诊断算法相比,所提方法获得较好的转移性能,基本达到100%的故障识别率。 展开更多
关键词 舵机 轴承 多源域深度迁移学习 MSFAN 故障诊断
在线阅读 下载PDF
多源域分布下优化权重的迁移学习Boosting方法 被引量:1
14
作者 李赟波 王士同 《计算机科学与探索》 CSCD 北大核心 2023年第6期1441-1452,共12页
深度决策树迁移学习Boosting方法(DTrBoost)仅能适应一个源域与一个目标域的训练数据,无法适应多个不同分布的源域的样本。此外,DTrBoost方法同步地从源域中学习数据至目标域模型,并没有根据重要程度量化学习知识的权重。在实践中,对于... 深度决策树迁移学习Boosting方法(DTrBoost)仅能适应一个源域与一个目标域的训练数据,无法适应多个不同分布的源域的样本。此外,DTrBoost方法同步地从源域中学习数据至目标域模型,并没有根据重要程度量化学习知识的权重。在实践中,对于某数据集的数据按照某一或某些特征划分出来的数据往往分布不一致,并且这些不同分布的数据对于最终模型的重要性也不一致,知识迁移的权重也因此不平等。针对这一问题,提出了多源域优化权重的迁移学习方法,主要思想是根据不同分布的源域空间计算出到目标域的KL距离,利用KL距离的比值计算出不同分布的源域样本的学习权重比例,从而优化整体梯度函数,使学习方向朝着梯度下降最快的方向进行。使用梯度下降算法能使模型较快收敛,在确保迁移学习效果的同时,也能确保学习的速度。实验结果表明,提出的算法在整体上实现了更好的性能并且对于不同的训练数据能够实现自适应效果,分类错误率平均下降0.013,在效果最好的OCR数据集上下降0.030。 展开更多
关键词 深度决策树迁移学习Boosting方法(DTrBoost) 多源迁移学习 KL距离 决策树
在线阅读 下载PDF
电子商务中隐空间多源迁移协同过滤 被引量:1
15
作者 龚松杰 丁佩芬 文世挺 《计算机应用研究》 CSCD 北大核心 2018年第3期711-716,共6页
评分数据的极端稀疏性是制约协同过滤(CF)算法在电子商务推荐中有效应用的关键瓶颈。为此,提出一种新颖的隐空间多源迁移协同过滤(latent multi-source transfer collaborative filtering,LMTCF)方法,在某个优化的隐子空间内,LMTCF桥接... 评分数据的极端稀疏性是制约协同过滤(CF)算法在电子商务推荐中有效应用的关键瓶颈。为此,提出一种新颖的隐空间多源迁移协同过滤(latent multi-source transfer collaborative filtering,LMTCF)方法,在某个优化的隐子空间内,LMTCF桥接多个用户/项目源领域隐因子,并保留目标数据的局部几何结构,从而更好地解决协同过滤中存在的数据稀疏性问题,且还能有效克服现有方法存在的负迁移和迁移不充分的问题。在实际基准数据集上的实验结果显示了所提方法明显优于现有相关方法。 展开更多
关键词 协同过滤推荐 稀疏性 多源迁移学习 隐空间
在线阅读 下载PDF
基于迁移学习的电力通信网异常站点业务数量预测 被引量:14
16
作者 杨济海 李号号 +3 位作者 彭汐单 张智成 黄倩 李石君 《数据采集与处理》 CSCD 北大核心 2019年第3期414-421,共8页
现有的多源迁移学习算法对回归问题的研究极少,大多是解决对称的二分类问题,本文提出了加权多源TrAdaBoost的回归算法,其中误差容忍系数能一定程度解决源领域样本权重缩减过快的问题,提高了算法的效果。在修改后的Friedman#1回归问题上... 现有的多源迁移学习算法对回归问题的研究极少,大多是解决对称的二分类问题,本文提出了加权多源TrAdaBoost的回归算法,其中误差容忍系数能一定程度解决源领域样本权重缩减过快的问题,提高了算法的效果。在修改后的Friedman#1回归问题上进行了实验,验证了该算法的有效性,误差容忍系数可以提高大约0.01的R2分数。将该算法应用到电力通信网的行业问题中,提出了异常站点(业务数量缺失严重的站点)检测与真值预测模型,在特征工程中使用了社交网络分析的方法,充分考虑了站点在拓扑图中的重要性。最终的实验效果进一步验证了算法的有效性。 展开更多
关键词 机器学习 电力通信网 回归算法 多源迁移学习 异常检测
在线阅读 下载PDF
小样本下滚动轴承故障的多源域迁移诊断方法 被引量:13
17
作者 陈保家 陈学力 +3 位作者 肖文荣 陈法法 肖能齐 刘强 《电子测量与仪器学报》 CSCD 北大核心 2022年第2期219-228,共10页
为了减小神经网络在机械设备故障预示与健康管理(PHM)过程中对大量完备数据的依赖,针对数据稀少情况下的滚动轴承故障诊断问题,提出了一种多源域迁移学习方法。模型采用一维卷积神经网络(1D-CNN),以原始振动信号作为模型的输入,利用两... 为了减小神经网络在机械设备故障预示与健康管理(PHM)过程中对大量完备数据的依赖,针对数据稀少情况下的滚动轴承故障诊断问题,提出了一种多源域迁移学习方法。模型采用一维卷积神经网络(1D-CNN),以原始振动信号作为模型的输入,利用两个不同的源域数据依次对模型进行预训练,使用目标域数据对预训练模型进行微调,提高对目标域的识别精度。采用频询实验台实测数据及西储大学数据集,在目标域故障样本不足的情况下分别对模型的分类精度、训练速度、结果稳定性、多源域有效性进行验证,并与卷积神经网络(CNN)、迁移成分分析(TCA)、联合分布适配(JDA)、支持向量机(SVM)的诊断结果进行对比。实验结果表明,在故障数据稀少时,模型能达到较高的分类精度,在目标域样本数量不同的3种情况下,多源域迁移方法分类精度分别达到了97.71%、96.28%、94.18%,并且模型有着较快的收敛速度,较好的稳定性。 展开更多
关键词 多源迁移学习 卷积神经网络 滚动轴承 故障诊断
在线阅读 下载PDF
基于多源差异对抗的高速列车小幅蛇行识别 被引量:1
18
作者 刘鑫 宁静 +3 位作者 王子轩 洪梓轩 张兵 陈春俊 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第9期3469-3480,共12页
高速列车的蛇行运动会增加车辆各部分的载荷,剧烈的蛇行运动会使得轮轨间产生较大冲击,产生脱轨的风险,严重威胁到行车安全,因此需要对车辆的蛇行状态进行识别,特别是对蛇行失稳状态开始之前的小幅蛇行状态的识别。目前大多数的研究主... 高速列车的蛇行运动会增加车辆各部分的载荷,剧烈的蛇行运动会使得轮轨间产生较大冲击,产生脱轨的风险,严重威胁到行车安全,因此需要对车辆的蛇行状态进行识别,特别是对蛇行失稳状态开始之前的小幅蛇行状态的识别。目前大多数的研究主要集中在利用单工况数据进行的深度学习以及单源迁移学习,然而高速列车在运行时面临复杂多变的工况。考虑到不同工况下的多源域数据具有不同的分布,仅使用单个工况数据建立的列车蛇行识别模型很难满足各种工况下的识别精度要求。提出一种基于多源双层差异对抗的高速列车小幅蛇行状态识别方法。该方法在训练过程中使用多个工况下具有不同分布的真实蛇行运动数据,并采用双层差异对抗训练策略。初层差异对抗中结合矩匹配模块和领域对抗模块,使得模型既能减小源域与目标域的分布差异,也能减小源域与源域的分布差异。在初层差异对抗的基础上,采用次层差异对抗训练方法,使得模型能够进一步对齐数据的边缘分布和条件分布,从而更好地学习可区分的特征,提高诊断任务的准确性。通过公共轴承数据验证该模型可行性后,用于高速列车蛇行状态识别研究中。实验结果表明,该方法能够正确识别出蛇行运动的不同状态,几种不同识别任务准确率均在99%以上,其诊断效果明显优于单源模型以及其他多源模型,证明了该方法的可靠性。说明该方法在高速列车蛇行状态智能监控中具有一定的工程应用价值。 展开更多
关键词 高速列车 小幅蛇行 多源迁移学习 双层差异对抗 故障识别
在线阅读 下载PDF
基于GCN的多源变工况滚动轴承故障诊断 被引量:6
19
作者 谢锋云 王玲岚 +3 位作者 宋明桦 樊秋阳 孙恩广 朱海燕 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第5期2109-2118,共10页
滚动轴承是旋转机械的关键部件,其健康状况的识别非常重要。迁移学习作为一种有效工具被广泛应用于故障诊断领域,但单源迁移学习方法可能存在泛化性能较差甚至引起负迁移,造成识别效果不佳的问题。提出一种基于多感受野图卷积网络(GCN)... 滚动轴承是旋转机械的关键部件,其健康状况的识别非常重要。迁移学习作为一种有效工具被广泛应用于故障诊断领域,但单源迁移学习方法可能存在泛化性能较差甚至引起负迁移,造成识别效果不佳的问题。提出一种基于多感受野图卷积网络(GCN)的多源迁移学习方法(MS-GCN),通过在多个源域数据上学习迁移知识,实现变工况下滚动轴承的故障诊断。该方法首先利用小波变换将振动数据样本转换为二维时频图样本,将获得的N组源域样本和目标域样本进行构建得到N组源域-目标域样本数据对;其次,先利用深度卷积网络学习每组数据对的高维特征,再由多感受野图卷积网络学习所提特征的数据结构,使得自适应方法能充分学习域不变特征,更有效地将源域与目标域特征进行对齐,训练得到N组分类器;最后,取N组分类器分类结果的平均值为目标域样本的状态识别结果。基于江南大学轴承数据集对所提方法展开实验验证,在3组不同的变工况轴承故障诊断任务中,所提方法对4种不同状态(正常、内圈故障、外圈故障及滚动体故障)的分类准确率均在99%以上,与其他方法相比诊断准确率提升了0.22~8.27个百分点。对比结果表明:所提方法对变工况下滚动轴承的故障进行识别,可以有效地诊断出轴承的故障类型,具有一定的工程实用价值。 展开更多
关键词 故障诊断 多感受野图卷积网络 多源迁移学习 深度卷积网络 滚动轴承
在线阅读 下载PDF
一种基于局部分类精度的概念漂移数据流分类算法
20
作者 张玲 马士伦 +1 位作者 黎利辉 文益民 《广西科学》 CAS 北大核心 2024年第1期100-109,共10页
概念漂移数据流分类是一个极具挑战性的问题。当新概念出现时,该概念下的学习样本过少,无法对分类器进行及时调整,进而导致分类精度不高。为了解决该问题,本文提出一种基于局部分类精度的概念漂移数据流分类算法——LA-MS-CDC。第一,LA-... 概念漂移数据流分类是一个极具挑战性的问题。当新概念出现时,该概念下的学习样本过少,无法对分类器进行及时调整,进而导致分类精度不高。为了解决该问题,本文提出一种基于局部分类精度的概念漂移数据流分类算法——LA-MS-CDC。第一,LA-MS-CDC将k-means聚类和局部分类精度算法结合,从分类器池中挑选出最优源领域分类器;第二,将最优源领域分类器与目标领域分类器加权集成,进而对样本分类;第三,根据分类样本的真实标签分别计算各分类器的损失,并对目标领域和源领域的分类器权重进行更新;第四,再利用该分类样本对目标领域分类器、最优源领域分类器进行更新;最后,完成分类器池的更新。在公开数据集上的实验结果表明,LA-MS-CDC能够有效地将源领域知识迁移到目标领域,与现有方法相比,其分类效果具有显著性提升。算法代码可在https://gitee.com/ymw12345/LAMSCDC上获取。 展开更多
关键词 概念漂移 多源在线迁移学习 局部分类精度 集成学习 多样性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部