期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
DFM-IA:面向B2C电子商务的多源用户兴趣数据采集机制
被引量:
11
1
作者
李聪
马丽
梁昌勇
《管理工程学报》
CSSCI
CSCD
北大核心
2017年第1期58-70,共13页
用户兴趣模型是电子商务个性化推荐服务的基础,用户兴趣数据的获取则是构建用户兴趣模型的核心环节。传统的轮询采集方法存在数据源不够全面、在线应用可扩展性差的不足,会导致同一业务分析所需数据采集时间跨度大、先采集数据可能失效...
用户兴趣模型是电子商务个性化推荐服务的基础,用户兴趣数据的获取则是构建用户兴趣模型的核心环节。传统的轮询采集方法存在数据源不够全面、在线应用可扩展性差的不足,会导致同一业务分析所需数据采集时间跨度大、先采集数据可能失效等情况,使得最终业务分析结果出现偏差。针对上述问题,对B2C电子商务用户兴趣数据进行了深入分析,提出了一种基于智能Agent的多源用户兴趣数据采集机制DFM-IA(Data Fetching Mechanism based on Intelligent Agent)。DFM-IA以用户Session为基本处理单元,设计了四种智能Agent(Fetching Agent、Watching Agent、Sort Agent、Logical Agent)和三条排序规则,对七类用户兴趣数据(浏览行为、关键词搜索、收藏行为、购物车行为、订单行为、支付行为、评价行为)进行排序与合并处理,从而在丰富数据采集源的同时大幅提高了在线数据采集效率,有助于解决推荐服务的数据稀疏性问题。仿真实验表明了该机制的高效性。
展开更多
关键词
用户
兴趣
模型
多源用户兴趣数据
智能AGENT
在线阅读
下载PDF
职称材料
题名
DFM-IA:面向B2C电子商务的多源用户兴趣数据采集机制
被引量:
11
1
作者
李聪
马丽
梁昌勇
机构
四川师范大学计算机科学学院
匹兹堡大学Katz商学院
四川师范大学图书信息中心
合肥工业大学管理学院
出处
《管理工程学报》
CSSCI
CSCD
北大核心
2017年第1期58-70,共13页
基金
国家自然科学基金资助项目(71202165)
国家自然科学基金重点资助项目(71331002)
四川省哲学社会科学规划资助项目(SC13C019)
文摘
用户兴趣模型是电子商务个性化推荐服务的基础,用户兴趣数据的获取则是构建用户兴趣模型的核心环节。传统的轮询采集方法存在数据源不够全面、在线应用可扩展性差的不足,会导致同一业务分析所需数据采集时间跨度大、先采集数据可能失效等情况,使得最终业务分析结果出现偏差。针对上述问题,对B2C电子商务用户兴趣数据进行了深入分析,提出了一种基于智能Agent的多源用户兴趣数据采集机制DFM-IA(Data Fetching Mechanism based on Intelligent Agent)。DFM-IA以用户Session为基本处理单元,设计了四种智能Agent(Fetching Agent、Watching Agent、Sort Agent、Logical Agent)和三条排序规则,对七类用户兴趣数据(浏览行为、关键词搜索、收藏行为、购物车行为、订单行为、支付行为、评价行为)进行排序与合并处理,从而在丰富数据采集源的同时大幅提高了在线数据采集效率,有助于解决推荐服务的数据稀疏性问题。仿真实验表明了该机制的高效性。
关键词
用户
兴趣
模型
多源用户兴趣数据
智能AGENT
Keywords
user interest model
multi-source user interest data
intelligent agent
分类号
C931 [经济管理—管理学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
DFM-IA:面向B2C电子商务的多源用户兴趣数据采集机制
李聪
马丽
梁昌勇
《管理工程学报》
CSSCI
CSCD
北大核心
2017
11
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部