期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于多源信号融合的离心泵叶轮磨损故障分析 被引量:7
1
作者 郭文琪 田慕琴 +2 位作者 宋建成 耿蒲龙 姚宇 《工矿自动化》 北大核心 2018年第6期75-80,共6页
针对离心泵故障信号易被噪声淹没、数据分析困难的问题,提出了一种基于多源信号融合的离心泵叶轮磨损故障分析方法。采集离心泵叶轮正常状态和磨损状态下蜗壳、出水口和底座3处的振动信号及原动机接线端的电信号;采用小波包分解提取振... 针对离心泵故障信号易被噪声淹没、数据分析困难的问题,提出了一种基于多源信号融合的离心泵叶轮磨损故障分析方法。采集离心泵叶轮正常状态和磨损状态下蜗壳、出水口和底座3处的振动信号及原动机接线端的电信号;采用小波包分解提取振动信号的特征频段,通过横向比较各频段能量值确定底座可作为最佳检测点,通过纵向比较各频段能量值以缩小频率分析范围;在缩小频率分析范围的基础上,采用线性调频Z变换对原动机接线端的电信号进行频谱分析,将故障特征频率与3次谐波频率分离,从而精确提取到故障特征频率。试验结果验证了该方法的有效性。 展开更多
关键词 矿井主排水 离心泵 叶轮磨损 故障特征频率 多源信号融合 小波包分解 线性调频Z变换
在线阅读 下载PDF
基于多源信号融合的灯泡贯流式机组故障特征提取 被引量:4
2
作者 陈茗 胡边 李靖 《人民长江》 北大核心 2023年第8期185-189,210,共6页
水电机组在非平稳工况及异常运行状态下,会产生剧烈的振动并发出刺耳的噪声。针对上述振动和音频信号,以灯泡贯流式水电机组为研究对象,通过布置高精度的加速度和音频传感器,对机组各部位的振动和噪声进行实时监测,采集振动和音频的多... 水电机组在非平稳工况及异常运行状态下,会产生剧烈的振动并发出刺耳的噪声。针对上述振动和音频信号,以灯泡贯流式水电机组为研究对象,通过布置高精度的加速度和音频传感器,对机组各部位的振动和噪声进行实时监测,采集振动和音频的多源融合信号。采用核主元分析法(KPCA)与改进的K-Means聚类算法提取多源融合信号频率幅值均方根参数,得到水轮机桨叶碰磨、本体敲击及发电机局放等故障的能量分布与特征值,构建了能够反映机组状态的六维特征向量模型。现场故障模拟试验表明,该模型能准确识别出对应故障,为机组检修维护提供了有力支撑。 展开更多
关键词 多源信号融合 故障特征 灯泡贯流式机组 核主元分析法(KPCA) K均值
在线阅读 下载PDF
基于毫米波雷达微动信号和脉搏波数据融合的睡眠呼吸暂停低通气综合征筛查技术 被引量:2
3
作者 赵翔 王威 +2 位作者 李晨洋 关建 李刚 《雷达学报(中英文)》 北大核心 2025年第1期102-116,共15页
睡眠呼吸暂停低通气综合征(SAHS)是一种常见的慢性睡眠呼吸障碍疾病,严重影响患者的睡眠质量和身体健康。该文提出了一种基于多源信号融合的睡眠呼吸暂停与低通气检测框架,通过融合毫米波雷达微动信号与光电容积脉搏波(PPG)描记法的脉... 睡眠呼吸暂停低通气综合征(SAHS)是一种常见的慢性睡眠呼吸障碍疾病,严重影响患者的睡眠质量和身体健康。该文提出了一种基于多源信号融合的睡眠呼吸暂停与低通气检测框架,通过融合毫米波雷达微动信号与光电容积脉搏波(PPG)描记法的脉搏波数据,实现高可靠的轻接触式睡眠呼吸暂停低通气综合征的诊断,以解决传统医学上依赖多导睡眠图(PSG)进行睡眠监测时舒适度差、成本高等缺点。研究中,为兼顾睡眠呼吸异常事件检测的准确率和鲁棒性,该文提出了一种雷达、脉搏波数据预处理算法得到信号中的时频信息和人工特征,并设计了用于将两类信号融合的深度神经网络,以实现对睡眠呼吸暂停和低通气事件的精准识别,从而估算呼吸暂停低通气指数(AHI),用于对患者的睡眠呼吸异常严重程度进行定量评估。基于上海交通大学医学院附属第六人民医院临床试验数据集的实验结果表明,该文所提方案估算的AHI与金标准PSG的相关系数达到了0.93,一致性良好,有潜力普及成为家用睡眠呼吸监护的工具,并起到睡眠呼吸暂停低通气综合征初步筛查的作用。 展开更多
关键词 毫米波雷达 光电容积脉搏波 多源信号融合 深度神经网络 睡眠呼吸暂停低通气综合征 呼吸暂停低通气指数
在线阅读 下载PDF
多源信号特征融合的电能质量扰动识别 被引量:2
4
作者 陈思源 程志友 +1 位作者 杨猛 胡乐乐 《安徽大学学报(自然科学版)》 CAS 北大核心 2024年第4期62-66,共5页
为了解决风能、太阳能等可再生能源输出的不稳定性和间歇性给电能质量带来的问题,提出多源信号特征融合的电能质量扰动识别方法.该方法引入电流信息增强扰动特征,为解决电能质量扰动识别提供了新的视角.算例分析结果表明:相对于其他2种... 为了解决风能、太阳能等可再生能源输出的不稳定性和间歇性给电能质量带来的问题,提出多源信号特征融合的电能质量扰动识别方法.该方法引入电流信息增强扰动特征,为解决电能质量扰动识别提供了新的视角.算例分析结果表明:相对于其他2种方法,该文方法的4个评价指标(准确率、精确率、召回率和F1分数)均最高.因此,该文方法具有优越性. 展开更多
关键词 电能质量扰动 残差网络 多源信号特征融合 相对位置矩阵 有效通道注意力
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部