期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多流融合网络的3D骨架人体行为识别
被引量:
4
1
作者
陈泯融
彭俊杰
曾国强
《华南师范大学学报(自然科学版)》
CAS
北大核心
2023年第1期94-101,共8页
当前大多基于卷积神经网络的3D骨架人体行为识别模型没有充分挖掘骨架序列所蕴含的几何特征,为了弥补这方面的不足,文章在AIF-CNN模型的基础上进行改进,提出多流融合网络模型(MS-CNN)。在此模型中,新增一种几何特征(kernel特征)作为输入...
当前大多基于卷积神经网络的3D骨架人体行为识别模型没有充分挖掘骨架序列所蕴含的几何特征,为了弥补这方面的不足,文章在AIF-CNN模型的基础上进行改进,提出多流融合网络模型(MS-CNN)。在此模型中,新增一种几何特征(kernel特征)作为输入,起到了丰富原始特征的作用;新增多运动特征,使模型学习到更加健壮的全局运动信息。最后,在NTU RGB+D 60数据集上进行消融实验,分别在NTU RGB+D 60数据集、NTU RGB+D 120数据集上,将MS-CNN模型与19、8个行为识别模型进行对比实验。消融实验结果表明:MS-CNN模型采用joint特征与kernel特征融合,其识别准确率比与core特征融合的高;随着多运动特征的增多,MS-CNN模型的识别准确率有所提高。对比实验结果表明:MS-CNN模型在2个评估策略下的识别准确率超过了大部分对比模型(包括基准AIF-CNN模型)。
展开更多
关键词
人体行为识别
3D骨架
多流融合网络
卷积神经
网络
在线阅读
下载PDF
职称材料
题名
基于多流融合网络的3D骨架人体行为识别
被引量:
4
1
作者
陈泯融
彭俊杰
曾国强
机构
华南师范大学计算机学院
暨南大学网络空间安全学院
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2023年第1期94-101,共8页
基金
国家自然科学基金项目(61872153,61972288)。
文摘
当前大多基于卷积神经网络的3D骨架人体行为识别模型没有充分挖掘骨架序列所蕴含的几何特征,为了弥补这方面的不足,文章在AIF-CNN模型的基础上进行改进,提出多流融合网络模型(MS-CNN)。在此模型中,新增一种几何特征(kernel特征)作为输入,起到了丰富原始特征的作用;新增多运动特征,使模型学习到更加健壮的全局运动信息。最后,在NTU RGB+D 60数据集上进行消融实验,分别在NTU RGB+D 60数据集、NTU RGB+D 120数据集上,将MS-CNN模型与19、8个行为识别模型进行对比实验。消融实验结果表明:MS-CNN模型采用joint特征与kernel特征融合,其识别准确率比与core特征融合的高;随着多运动特征的增多,MS-CNN模型的识别准确率有所提高。对比实验结果表明:MS-CNN模型在2个评估策略下的识别准确率超过了大部分对比模型(包括基准AIF-CNN模型)。
关键词
人体行为识别
3D骨架
多流融合网络
卷积神经
网络
Keywords
human action recognition
3D skeleton
multi-stream fusion network
convolution neural network
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多流融合网络的3D骨架人体行为识别
陈泯融
彭俊杰
曾国强
《华南师范大学学报(自然科学版)》
CAS
北大核心
2023
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部