流形学习已成为机器学习和数据挖掘领域的研究热点。比如,算法LLE(Locally Linear Embedding)作为一种非线性降维算法有很好的泛化性能,被广泛地应用于图像分类和目标识别,但其仅仅假设了数据集处于单流形的情况。MM-LLE(Multiple Manif...流形学习已成为机器学习和数据挖掘领域的研究热点。比如,算法LLE(Locally Linear Embedding)作为一种非线性降维算法有很好的泛化性能,被广泛地应用于图像分类和目标识别,但其仅仅假设了数据集处于单流形的情况。MM-LLE(Multiple Manifold Locally Linear Embedding)学习算法作为一种考虑多流形情况的改进算法,依然存在几点不足之处。因此,提出改进的MM-LLE算法,通过任意两类间的局部低维流形组合并构建分类器来提高分类精度;同时改进原算法计算最佳维度的方法。通过与算法ISOMAP、LLE以及MM-LLE比较分类精度,实验结果验证了改进算法的有效性。展开更多
流形学习方法可以发现嵌入于高维观测数据中的低维流形结构,但是传统的流形学习算法都是假设所有数据位于单一流形上,忽略了高维数据中不同的子集可能存在不同的流形.针对上述问题,本文提出一种监督多流形鉴别嵌入的维数约简方法,并应...流形学习方法可以发现嵌入于高维观测数据中的低维流形结构,但是传统的流形学习算法都是假设所有数据位于单一流形上,忽略了高维数据中不同的子集可能存在不同的流形.针对上述问题,本文提出一种监督多流形鉴别嵌入的维数约简方法,并应用于高光谱遥感影像分类.该方法首先利用样本数据的类别标签进行多子流形划分,在此基础上采用图嵌入理论构造流形内图和流形间图,然后通过最小化流形内距离同时最大化流形间距离以增强类内数据聚集性和类间数据分散性,提取低维鉴别特征,改善地物分类性能.在University of Pavia(PaviaU)和Kennedy Space Center(KSC)高光谱数据集上的实验表明,相较于其他单流形算法和多流形算法,该方法取得了更高的分类精度,在随机选取2%训练样本时,其总体分类精度分别达到88.04%和84.53%,有效提升了地物分类性能.展开更多
文摘流形学习已成为机器学习和数据挖掘领域的研究热点。比如,算法LLE(Locally Linear Embedding)作为一种非线性降维算法有很好的泛化性能,被广泛地应用于图像分类和目标识别,但其仅仅假设了数据集处于单流形的情况。MM-LLE(Multiple Manifold Locally Linear Embedding)学习算法作为一种考虑多流形情况的改进算法,依然存在几点不足之处。因此,提出改进的MM-LLE算法,通过任意两类间的局部低维流形组合并构建分类器来提高分类精度;同时改进原算法计算最佳维度的方法。通过与算法ISOMAP、LLE以及MM-LLE比较分类精度,实验结果验证了改进算法的有效性。
文摘流形学习方法可以发现嵌入于高维观测数据中的低维流形结构,但是传统的流形学习算法都是假设所有数据位于单一流形上,忽略了高维数据中不同的子集可能存在不同的流形.针对上述问题,本文提出一种监督多流形鉴别嵌入的维数约简方法,并应用于高光谱遥感影像分类.该方法首先利用样本数据的类别标签进行多子流形划分,在此基础上采用图嵌入理论构造流形内图和流形间图,然后通过最小化流形内距离同时最大化流形间距离以增强类内数据聚集性和类间数据分散性,提取低维鉴别特征,改善地物分类性能.在University of Pavia(PaviaU)和Kennedy Space Center(KSC)高光谱数据集上的实验表明,相较于其他单流形算法和多流形算法,该方法取得了更高的分类精度,在随机选取2%训练样本时,其总体分类精度分别达到88.04%和84.53%,有效提升了地物分类性能.