期刊文献+
共找到109篇文章
< 1 2 6 >
每页显示 20 50 100
基于多流对极卷积神经网络的光场图像深度估计
1
作者 王硕 王亚飞 《计算机应用与软件》 北大核心 2020年第8期194-201,共8页
深度图的3D信息在导航、AR、三维重建等应用上发挥着重要的作用。针对现有光场图像深度估计算法精度低、速度慢的问题,提出一种基于多流对极卷积神经网络的光场深度估计方法。将光场图像进行预处理,转化为四个角度的极平面图(epipolar p... 深度图的3D信息在导航、AR、三维重建等应用上发挥着重要的作用。针对现有光场图像深度估计算法精度低、速度慢的问题,提出一种基于多流对极卷积神经网络的光场深度估计方法。将光场图像进行预处理,转化为四个角度的极平面图(epipolar plane image,EPI)结构;使用光场数据增强方法来扩充训练数据量;使用神经网络对EPI数据进行特征提取,并使用两种方式进行特征融合,得到两个初始深度图;对初始深度图进行合并优化处理,得到最终的深度图。实验结果表明,该算法在均方误差、不良像素率和计算时间三个性能指标上明显优于现有算法,在光场深度估计上具有较好的准确性和泛化能力。 展开更多
关键词 机器视觉 光场 深度信息估计 多流对极卷积神经网络 特征融合
在线阅读 下载PDF
基于注意力-残差双特征流卷积神经网络的深度图帧内编码单元快速划分算法
2
作者 贾克斌 吴岳珩 《北京工业大学学报》 北大核心 2025年第5期539-551,共13页
针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。... 针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。首先,提出一种具有3个分支的注意力-残差双特征流卷积神经网络(attention-residual bi-feature stream convolutional neural networks,ARBS-CNN)模型,其中基于残差模块(residual module,RM)和特征蒸馏(feature distill,FD)模块的2个分支用于提取全局图像特征,基于动态模块(dynamic module,DM)和卷积-卷积块注意力模块(convolutional-convolutional block attention module,Conv-CBAM)的分支用于提取局部图像特征;然后,将提取到的特征进行整合并输出,得到对深度图CU划分结构的预测;最后,将ARBS-CNN嵌入到3D-HEVC测试平台中,利用预测结果加速深度图帧内编码。与原始算法相比,提出的算法能在维持率失真性能几乎不受影响的条件下,平均减少74.2%的编码时间。实验结果表明,该算法能够在保持率失真性能的条件下,有效降低3D-HEVC的编码复杂度。 展开更多
关键词 三维高效视频编码(three-dimensional high efficiency video coding 3D-HEVC) 深度图 卷积神经网络(convolutional neural networks CNN) 编码单元(coding unit CU)划分 帧内编码 双特征
在线阅读 下载PDF
极高光伏渗透率下基于潮流雅可比矩阵和卷积神经网络的静态电压稳定在线预测 被引量:15
3
作者 吴倩红 韩蓓 +1 位作者 李国杰 汪可友 《中国电机工程学报》 EI CSCD 北大核心 2021年第12期4058-4067,共10页
大量光伏接入电力系统,给系统的电压稳定带来了挑战。该文针对极高光伏渗透率,即瞬时光伏渗透率可能大于100%的情况,分析电压会产生崩溃的现象,提出双向静态电压稳定裕度(voltage stability margin,VSM)的概念。由于潮流雅可比矩阵具有... 大量光伏接入电力系统,给系统的电压稳定带来了挑战。该文针对极高光伏渗透率,即瞬时光伏渗透率可能大于100%的情况,分析电压会产生崩溃的现象,提出双向静态电压稳定裕度(voltage stability margin,VSM)的概念。由于潮流雅可比矩阵具有天然的网格结构性、拓扑变化性与电压相关性,而卷积神经网络具有强的学习能力、泛化能力,且可以专门处理网格结构数据,因此,潮流雅可比矩阵作为输入的卷积神经网络模型能够预测双向VSM。通过IEEE-33节点系统与IEEE-123节点系统对所提方法进行验证,结果显示,所提方法能够在系统网络拓扑结构发生变化时保持较高的预测精度,且具有较强的泛化能力。 展开更多
关键词 高光伏渗透率 电压稳定裕度 雅可比矩阵 卷积神经网络 拓扑结构
在线阅读 下载PDF
基于卷积神经网络的直流送端系统暂态过电压估算方法 被引量:20
4
作者 陈厚合 张赫 +3 位作者 王长江 魏俊红 张艳军 张嵩 《电网技术》 EI CSCD 北大核心 2020年第8期2987-2997,共11页
为有效预测大扰动过程中直流送端系统的暂态过电压,提出一种基于卷积神经网络(convolutionalneural networks,CNN)的直流送端系统暂态过电压估算方法。首先,基于CNN输入特征构建的基本原理,搭建具有多层隐含层的非线性网络结构,将广域... 为有效预测大扰动过程中直流送端系统的暂态过电压,提出一种基于卷积神经网络(convolutionalneural networks,CNN)的直流送端系统暂态过电压估算方法。首先,基于CNN输入特征构建的基本原理,搭建具有多层隐含层的非线性网络结构,将广域量测装置采集的各节点电压、相角及功率作为输入层,依据电网节点的拓补关系及故障发生到切除的时间顺序进行拼接,得到表征电网状态的矩阵。然后,优化调整CNN的超参数,采用梯度下降法进行有监督训练,通过逐层优化输入层与卷积层之间的权重矩阵,实现关键特征值的自动提取,同时利用CNN的深层架构构建暂态过电压与输入数据间的映射模型,快速准确地估算直流送端系统暂态过电压。最后,对修改后的Nordic32交直流混合系统和广东电网系统进行分析,验证该方法的有效性和准确性。 展开更多
关键词 高压直 卷积神经网络 暂态过电压 人工智能
在线阅读 下载PDF
结合剪枝与流合并的卷积神经网络加速压缩方法 被引量:7
5
作者 谢斌红 钟日新 +1 位作者 潘理虎 张英俊 《计算机应用》 CSCD 北大核心 2020年第3期621-625,共5页
深度卷积神经网络因规模庞大、计算复杂而限制了其在实时要求高和资源受限环境下的应用,因此有必要对卷积神经网络现有的结构进行优化压缩和加速。为了解决这一问题,提出了一种结合剪枝、流合并的混合压缩方法。该方法通过不同角度去压... 深度卷积神经网络因规模庞大、计算复杂而限制了其在实时要求高和资源受限环境下的应用,因此有必要对卷积神经网络现有的结构进行优化压缩和加速。为了解决这一问题,提出了一种结合剪枝、流合并的混合压缩方法。该方法通过不同角度去压缩模型,进一步降低了参数冗余和结构冗余所带来的内存消耗和时间消耗。首先,从模型的内部将每层中冗余的参数剪去;然后,从模型的结构上将非必要的层与重要的层进行流合并;最后,通过重新训练来恢复模型的精度。在MNIST数据集上的实验结果表明,提出的混合压缩方法在不降低模型精度前提下,将LeNet-5压缩到原来的1/20,运行速度提升了8倍。 展开更多
关键词 卷积神经网络 模型压缩 网络剪枝 合并 冗余
在线阅读 下载PDF
基于波形记忆和模糊极小—极大神经网络的变压器励磁涌流和内部短路的鉴别 被引量:8
6
作者 潘荣贞 郁惟镛 田寿龙 《电网技术》 EI CSCD 北大核心 2002年第5期4-9,共6页
传统的区分变压器励磁涌流和内部短路的各种方法存在原理性缺陷 ,不能满足现代超高压电力系统的要求 ,此文根据内部故障和单纯涌流这两种情况下波形的不同 ,提出了波形记忆的原理并采用了一种模糊神经网络模型——模糊极小—极大神经网... 传统的区分变压器励磁涌流和内部短路的各种方法存在原理性缺陷 ,不能满足现代超高压电力系统的要求 ,此文根据内部故障和单纯涌流这两种情况下波形的不同 ,提出了波形记忆的原理并采用了一种模糊神经网络模型——模糊极小—极大神经网络来对这两种波形进行记忆和鉴别。运用EMTP程序对变压器各种内部故障或涌流的情况进行较为全面的仿真以形成网络的训练样本 ,通过学习和测试 ,表明该网络所形成的新算法能够正确鉴别变压器各种运行工况下的励磁涌流和内部短路 ,所需的鉴别时间小于 2 0 m 展开更多
关键词 故障 波形记忆 模糊 神经网络 变压器 励磁涌 内部短路 鉴别
在线阅读 下载PDF
基于孪生神经网络的Tor网络流关联方法 被引量:1
7
作者 孟玉飞 翟江涛 刘光杰 《计算机工程与设计》 北大核心 2024年第5期1321-1328,共8页
为进一步提升Tor(the onion router)网络流关联技术的准确率,减少时空开销以及增强容错性,提出一种基于孪生神经网络的Tor网络流关联方法。提取Tor网络流量的包间隔与包大小作为原始流量特征,利用孪生神经网络对特征进行关联性分析。通... 为进一步提升Tor(the onion router)网络流关联技术的准确率,减少时空开销以及增强容错性,提出一种基于孪生神经网络的Tor网络流关联方法。提取Tor网络流量的包间隔与包大小作为原始流量特征,利用孪生神经网络对特征进行关联性分析。通过孪生神经网络提取入口流与出口流的特征向量并进行相似度计算,根据阈值选择函数选择关联阈值判断流量是否关联。实验结果表明,所提方法关联准确率达到96.21%,误报率仅为0.1%,较现有方法准确率提升2.05%,误报率显著降低,进一步降低了关联成本。 展开更多
关键词 匿名通信 洋葱路由 关联分析 孪生网络 深度学习 卷积神经网络 门控循环神经网络
在线阅读 下载PDF
一种基于双流卷积神经网络跌倒识别方法 被引量:13
8
作者 袁智 胡辉 《河南师范大学学报(自然科学版)》 CAS 北大核心 2017年第3期96-101,共6页
针对跌倒行为的视觉特征难以提取的问题,提出一种由两路卷积神经网络和模型融合部分组成的双流卷积神经网络(Two-Stream CNN)的跌倒识别方法.该方法的一路对视频帧的运动人加框标记后,送三维卷积神经网络(3D-CNN)处理来消除视频背景的干... 针对跌倒行为的视觉特征难以提取的问题,提出一种由两路卷积神经网络和模型融合部分组成的双流卷积神经网络(Two-Stream CNN)的跌倒识别方法.该方法的一路对视频帧的运动人加框标记后,送三维卷积神经网络(3D-CNN)处理来消除视频背景的干扰;另一路从相邻视频帧获取光流图后,送VGGNet-16卷积神经网络处理;最后将3D-CNN和VGGNet-16的Softmax输出识别概率加权融合作为Two-Stream CNN输出结果.实验结果表明:标记运动人并经3D-CNN处理有效地消除了视频背景的干扰;Two-Stream CNN跌倒识别率为96%,比3D-CNN提高了4%,比VGGNet-16网络提高了3%. 展开更多
关键词 跌倒识别 卷积神经网络 视频帧
在线阅读 下载PDF
基于卷积神经网络的撞击流反应器浓度场混合特性 被引量:2
9
作者 张建伟 许蕊 +2 位作者 张忠闯 董鑫 冯颖 《化工进展》 EI CAS CSCD 北大核心 2023年第2期658-668,共11页
基于PLIF测试技术结合卷积神经网络技术提出混合性能预测方法,分析水平对置撞击流反应器浓度场混合特性,能准确预测其内部浓度场的混合均匀度及混合时间。基于卷积神经网络构建了混合性能预测模型,利用水平对置撞击流反应器浓度场实验... 基于PLIF测试技术结合卷积神经网络技术提出混合性能预测方法,分析水平对置撞击流反应器浓度场混合特性,能准确预测其内部浓度场的混合均匀度及混合时间。基于卷积神经网络构建了混合性能预测模型,利用水平对置撞击流反应器浓度场实验数据对构建的模型进行有监督地训练并进行预测,预测结果显示对混合均匀度的预测准确率达95%,计算效率提高了99.99%。为更好地理解混合性能预测模型对混合均匀度的预测机理,本文对其卷积层输出进行可视化处理,通过功率谱分析卷积核的响应给出了撞击流反应器浓度场特征提取的物理解释。最后利用预测模型搭建混合均匀度快速获取系统并应用于撞击流混合特性研究。所提出的基于卷积神经网络的预测模型可以有效分析水平对置撞击流反应器的混合特性,预测模型可靠、适用范围广,为深度学习算法应用于撞击流领域提供了方案经验。 展开更多
关键词 撞击反应器 卷积神经网络 混合 浓度场 预测
在线阅读 下载PDF
基于卷积神经网络的光流估计模型
10
作者 丰艳 刘帅 王传旭 《数据采集与处理》 CSCD 北大核心 2021年第1期63-75,共13页
光流信息是图像像素的运动表示,现有光流估计方法在应对图像遮挡、大位移和细节呈现等复杂情况时难以保证高精度。为了克服这些难点问题,本文建立一种新型的卷积神经网络模型,通过改进卷积形式和特征融合的方式来提高估计精度。首先,加... 光流信息是图像像素的运动表示,现有光流估计方法在应对图像遮挡、大位移和细节呈现等复杂情况时难以保证高精度。为了克服这些难点问题,本文建立一种新型的卷积神经网络模型,通过改进卷积形式和特征融合的方式来提高估计精度。首先,加入调整优化能力更强的可形变卷积,以便于提取相邻帧图像的大位移和细节等空间特征;然后利用基于注意力机制生成特征关联层,将相邻两帧的特征进行融合,以其作为由反卷积和上采样构成的解码部分的输入,旨在克服基于特征匹配等估计光流传统方法精度低的缺点;最后将得到的估计光流通过多网络堆栈的循环优化模型实现最终的光流估计。实验表明,本文网络模型在处理遮挡、大位移和细节呈现等方面的表现优于现有方法。 展开更多
关键词 估计 可形变卷积 卷积神经网络 注意力机制
在线阅读 下载PDF
用于微表情识别的改进双流浅层卷积神经网络
11
作者 李昆仑 陈栋 +1 位作者 王珺 王怡辉 《小型微型计算机系统》 CSCD 北大核心 2021年第6期1219-1226,共8页
在微表情自动识别任务中,浅层卷积神经网络和深层网络相比更好地改善了网络训练过拟合的情况,但是多数浅层卷积神经网络存在输入特征单一和提取高维有效特征能力不足的问题.针对上述问题本文同时使用图像的灰度特征和运动特征表征原图像... 在微表情自动识别任务中,浅层卷积神经网络和深层网络相比更好地改善了网络训练过拟合的情况,但是多数浅层卷积神经网络存在输入特征单一和提取高维有效特征能力不足的问题.针对上述问题本文同时使用图像的灰度特征和运动特征表征原图像,并且提出了一种改进双流浅层卷积神经网络(Enhanced Dual-stream Shallow Convolutional Neural Network,EDSSNet)用于微表情的识别.本文首先使用欧拉视频放大算法和TV-L1光流法对视频关键帧处理,提取图像的灰度特征和运动特征,然后用空洞卷积和注意力模块改进双流浅层卷积网络模型,提高网络提取有效特征的能力,最后将两种特征输入网络训练后进行分类.理论分析及在CASMEⅡ、SMIC-HS和SAMM微表情数据库上的实验结果均表明了改进模型的有效性. 展开更多
关键词 微表情识别 卷积神经网络 欧拉视频放大算法 TV-L1光 空洞卷积 注意力机制
在线阅读 下载PDF
基于时空卷积神经网络的数据缺失交通流预测 被引量:9
12
作者 张壮壮 屈立成 +2 位作者 李翔 张明皓 李昭璐 《计算机工程与应用》 CSCD 北大核心 2022年第7期259-265,共7页
针对数据连续缺失情况下交通流预测精度下降甚至失效的问题,提出了一种时空卷积神经网络预测模型,根据横向分布的时间相关性和纵向分布的空间相关性,构建路网交通数据时空矩阵,引入掩码矩阵标记数据的缺失状况,利用卷积操作提取路网中... 针对数据连续缺失情况下交通流预测精度下降甚至失效的问题,提出了一种时空卷积神经网络预测模型,根据横向分布的时间相关性和纵向分布的空间相关性,构建路网交通数据时空矩阵,引入掩码矩阵标记数据的缺失状况,利用卷积操作提取路网中各检测器之间隐含的非线性关联,建立当前时刻与未来交通状态的映射关系,实现数据缺失情况下的交通流预测。使用公开数据集,在3个时间尺度上的验证结果表明,所提出的模型在平均误差和预测精度两个方面均优于长短期记忆网络、门控循环单元、扩散卷积神经网络和图马尔可夫网络模型,在交通数据随机缺失和连续缺失两种情况下,均表现出了良好的稳定性和健壮性。 展开更多
关键词 智能交通系统 交通预测 深度学习 时空卷积神经网络 连续数据缺失
在线阅读 下载PDF
基于改进时空残差卷积神经网络的城市路网短时交通流预测 被引量:8
13
作者 包银鑫 曹阳 施佺 《计算机应用》 CSCD 北大核心 2022年第1期258-264,共7页
城市路网交通流预测受到历史交通流和相邻路口交通流的影响,具有复杂的时空关联性。针对传统时空残差模型缺乏对交通流数据进行相关性分析、捕获微小变化而容易忽略长期时间特征等问题,提出一种基于改进时空残差卷积神经网络(CNN)的城... 城市路网交通流预测受到历史交通流和相邻路口交通流的影响,具有复杂的时空关联性。针对传统时空残差模型缺乏对交通流数据进行相关性分析、捕获微小变化而容易忽略长期时间特征等问题,提出一种基于改进时空残差卷积神经网络(CNN)的城市路网短时交通流预测模型。该模型将原始交通流数据转化成交通栅格数据,利用皮尔逊相关系数(PCC)对交通栅格数据进行相关性分析,确定相关性高的周期序列和邻近序列;同时,建立周期序列模型和邻近序列模型,并引入长短时记忆(LSTM)网络作为混合模型提取时间特征以及捕获两种序列的长期时间特征。利用成都市出租车数据集对模型进行验证,结果表明该模型预测结果优于LSTM、CNN和传统残差模型等基准模型,以均方根误差(RMSE)为评价指标时,所提模型将测试集中交通路网的平均预测精度分别提高了25.6%、13.3%和3.2%。 展开更多
关键词 短时交通预测 时空分析 残差网络 皮尔逊相关系数 长短时记忆网络 卷积神经网络 组合模型
在线阅读 下载PDF
基于卷积神经网络的视频流隐藏信息检测方法 被引量:2
14
作者 罗远焱 杜学绘 孙奕 《计算机工程与设计》 北大核心 2020年第2期346-353,共8页
为解决现有视频流隐藏信息检测中,人工检测特征设计难度不断加大的问题,提出一种基于卷积神经网络的视频流隐藏信息检测方法。在神经网络中构建残差学习单元,避免深层次卷积神经网络在训练时的梯度消失,利用深层神经网络自动从数据中挖... 为解决现有视频流隐藏信息检测中,人工检测特征设计难度不断加大的问题,提出一种基于卷积神经网络的视频流隐藏信息检测方法。在神经网络中构建残差学习单元,避免深层次卷积神经网络在训练时的梯度消失,利用深层神经网络自动从数据中挖掘检测特征,在此基础上引入量化截断操作,增加检测模型多样性,提升检测性能。使用FFmpeg与x264编码标准CIF序列生成的视频进行实验,实验结果表明,该方法相比现有方法具有更高的检测准确率。 展开更多
关键词 卷积神经网络 视频 隐藏信息 检测 残差学习 量化操作
在线阅读 下载PDF
低资源语音识别中融合多流特征的卷积神经网络声学建模方法 被引量:7
15
作者 秦楚雄 张连海 《计算机应用》 CSCD 北大核心 2016年第9期2609-2615,共7页
针对卷积神经网络(CNN)声学建模参数在低资源训练数据条件下的语音识别任务中存在训练不充分的问题,提出一种利用多流特征提升低资源卷积神经网络声学模型性能的方法。首先,为了在低资源声学建模过程中充分利用有限训练数据中更多数量... 针对卷积神经网络(CNN)声学建模参数在低资源训练数据条件下的语音识别任务中存在训练不充分的问题,提出一种利用多流特征提升低资源卷积神经网络声学模型性能的方法。首先,为了在低资源声学建模过程中充分利用有限训练数据中更多数量的声学特征,先对训练数据提取几类不同的特征;其次,对每一类类特征分别构建卷积子网络,形成一个并行结构,使得多特征数据在概率分布上得以规整;然后通过在并行卷积子网络之上加入全连接层进行融合,从而得到一种新的卷积神经网络声学模型;最后,基于该声学模型搭建低资源语音识别系统。实验结果表明,并行卷积层子网络可以将不同特征空间规整得更为相似,且该方法相对传统多特征拼接方法和单特征CNN建模方法分别提升了3.27%和2.08%的识别率;当引入多语言训练时,该方法依然适用,且识别率分别相对提升了5.73%和4.57%。 展开更多
关键词 低资源语音识别 卷积神经网络 特征规整 多流特征
在线阅读 下载PDF
结合卷积和交叉变换网络的光流估计
16
作者 温远斌 黄影平 李瀚灵 《上海理工大学学报》 北大核心 2025年第4期438-448,共11页
光流估计是计算机视觉领域的核心任务。近年来,基于深度学习的光流估计方法取得了显著进展。但光流算法容易受到图像遮挡、重叠物体和相似物体的影响,从而导致运动估计准确性下降。为了解决这一问题,提出了一种结合卷积和交叉变换网络... 光流估计是计算机视觉领域的核心任务。近年来,基于深度学习的光流估计方法取得了显著进展。但光流算法容易受到图像遮挡、重叠物体和相似物体的影响,从而导致运动估计准确性下降。为了解决这一问题,提出了一种结合卷积和交叉变换网络的光流估计模型。首先,利用卷积和交叉注意力机制对连续两帧图像进行特征提取与增强。其次,结合上下文特征网络编码提供的上下文信息,通过特征聚合模块产生聚合特征,使用ConvGRU模块进行光流的迭代更新,并通过上采样模块产生光流特征估计图,完成光流估计任务。最后,进行MPI-Sintel和KITTI 2015数据集的综合实验对比分析。实验结果表明,所提出的方法可以有效地提高光流估计的精度,并具有良好的泛化性。 展开更多
关键词 估计 卷积神经网络 交叉变换网络 注意力机制 凸优化上采样
在线阅读 下载PDF
基于区域卷积神经网络和光流法的目标跟踪 被引量:25
17
作者 吴进 董国豪 李乔深 《电讯技术》 北大核心 2018年第1期6-12,共7页
为解决基于深度学习的在线目标跟踪算法速度慢的问题,设计并实现了一种基于区域卷积网络和光流法相结合的目标跟踪算法。该算法在T-1帧跟踪结果的基础上使用光流法计算跟踪目标的运动矢量计算出跟踪目标在T帧上的初选框,再将初选框区域... 为解决基于深度学习的在线目标跟踪算法速度慢的问题,设计并实现了一种基于区域卷积网络和光流法相结合的目标跟踪算法。该算法在T-1帧跟踪结果的基础上使用光流法计算跟踪目标的运动矢量计算出跟踪目标在T帧上的初选框,再将初选框区域作为区域卷积网络的输入,计算目标的精确跟踪结果。通过实验分析对比,算法对目标运动速度和形变具有很好的鲁棒性,并且跟踪速度可以达到50 frame/s。相较于在线跟踪算法,所提方法在满足较高的跟踪准确率的基础上大大提升了目标跟踪算法的速度。 展开更多
关键词 目标跟踪 深度学习 卷积神经网络
在线阅读 下载PDF
基于多通道极深卷积神经网络的图像超分辨率算法 被引量:8
18
作者 黄伟 冯晶晶 黄遥 《计算机工程》 CAS CSCD 北大核心 2020年第9期242-247,253,共7页
卷积神经网络(CNN)在单幅图像超分辨率重构中存在网络结构较浅、可提取特征较少和细节重构效果不显著等问题。为此,提出一种基于多通道极深CNN的图像超分辨率算法,分别对原始低分辨率图像进行3种插值和3种锐化等预处理操作,并以多通道... 卷积神经网络(CNN)在单幅图像超分辨率重构中存在网络结构较浅、可提取特征较少和细节重构效果不显著等问题。为此,提出一种基于多通道极深CNN的图像超分辨率算法,分别对原始低分辨率图像进行3种插值和3种锐化等预处理操作,并以多通道图像作为CNN的输入层数据。通过重新调整卷积核大小以加深网络结构,使得输入层数据在极深的CNN模型中训练重构高分辨率图像。实验结果表明,与Bicubic、SRCNN和MC-SRCNN等算法相比,该算法的峰值信噪比和视觉效果均较好。 展开更多
关键词 卷积神经网络 超分辨率重构 多通道图像 卷积 网络
在线阅读 下载PDF
基于深度卷积神经网络的运动目标光流检测方法 被引量:15
19
作者 王正来 黄敏 +1 位作者 朱启兵 蒋胜 《光电工程》 CAS CSCD 北大核心 2018年第8期38-47,共10页
运动目标检测是物体检测领域的一个重要研究方向,在目标识别中有着至关重要的作用。针对传统运动检测方法精度不高、无法对运动目标进行检测,本文将深度卷积神经网络引入到运动目标光流检测中,将前后帧图像及目标光流场图像作为网络的输... 运动目标检测是物体检测领域的一个重要研究方向,在目标识别中有着至关重要的作用。针对传统运动检测方法精度不高、无法对运动目标进行检测,本文将深度卷积神经网络引入到运动目标光流检测中,将前后帧图像及目标光流场图像作为网络的输入,自适应地学习运动目标光流,并通过对网络放大架构的优化及网络的精简,同时采用数据增广等技术,设计出精度与实时性兼顾的目标物体光流检测网络。实验结果表明,本文方法在运动目标的光流场检测中有更好的表现,SS-sp和CS-sp网络相比原网络在检测精度上均提高了约5.0%,同时大幅减少了网络的运行时间,基本满足实时检测的要求。 展开更多
关键词 运动目标 检测 深度卷积神经网络 网络结构优化
在线阅读 下载PDF
双输入流深度反卷积的插值神经网络
20
作者 张强 杨剑 富丽贞 《计算机应用》 CSCD 北大核心 2019年第8期2271-2275,共5页
在实际工作中深度学习方法通常不具备大量的训练样本,因此提出了双输入流深度反卷积生成神经网络的构架,依据给定的条件产生新的目标图像,从而扩充训练样本集。该神经网络的整体架构由双输入的卷积网络和一个反卷积网络输出构成,其中双... 在实际工作中深度学习方法通常不具备大量的训练样本,因此提出了双输入流深度反卷积生成神经网络的构架,依据给定的条件产生新的目标图像,从而扩充训练样本集。该神经网络的整体架构由双输入的卷积网络和一个反卷积网络输出构成,其中双输入卷积网络接收目标物体不同视角的两张图片并提取抽象特征,而反卷积网络则利用抽象特征和设定的参数产生新的插值目标图像。在ShapeNetCore数据集上的实验结果显示,在相同数量的训练样本空间中,与未扩展数据集的卷积网络相比,双输入流深度反卷积生成神经网络的识别率提高了20%左右。结果表明,双输入流深度反卷积生成神经网络无需输入目标物类别,可生成新参数条件下的目标图像,扩充训练样本空间,从而提高识别率,可用于少样本的目标物多角度识别。 展开更多
关键词 深度学习 人工智能 生成神经网络 卷积 双输入
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部