期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多流对极卷积神经网络的光场图像深度估计
1
作者 王硕 王亚飞 《计算机应用与软件》 北大核心 2020年第8期194-201,共8页
深度图的3D信息在导航、AR、三维重建等应用上发挥着重要的作用。针对现有光场图像深度估计算法精度低、速度慢的问题,提出一种基于多流对极卷积神经网络的光场深度估计方法。将光场图像进行预处理,转化为四个角度的极平面图(epipolar p... 深度图的3D信息在导航、AR、三维重建等应用上发挥着重要的作用。针对现有光场图像深度估计算法精度低、速度慢的问题,提出一种基于多流对极卷积神经网络的光场深度估计方法。将光场图像进行预处理,转化为四个角度的极平面图(epipolar plane image,EPI)结构;使用光场数据增强方法来扩充训练数据量;使用神经网络对EPI数据进行特征提取,并使用两种方式进行特征融合,得到两个初始深度图;对初始深度图进行合并优化处理,得到最终的深度图。实验结果表明,该算法在均方误差、不良像素率和计算时间三个性能指标上明显优于现有算法,在光场深度估计上具有较好的准确性和泛化能力。 展开更多
关键词 机器视觉 光场 深度信息估计 多流对极卷积神经网络 特征融合
在线阅读 下载PDF
融合三维人脸动态信息和光流信息的人脸表情识别 被引量:4
2
作者 张华忠 潘曰凯 +3 位作者 涂晓光 刘建华 许罗鹏 周超 《计算机科学》 CSCD 北大核心 2024年第S01期594-600,共7页
人脸表情识别在静态图像上取得了卓越的成效,但这些方法应用于视频或图像序列时,准确度和鲁棒性往往会受到影响。传统的方法通常无法基于空间信息和光流信息进行人脸表情的识别,然而这些辅助识别信息都是二维信息,没有考虑到人脸的表情... 人脸表情识别在静态图像上取得了卓越的成效,但这些方法应用于视频或图像序列时,准确度和鲁棒性往往会受到影响。传统的方法通常无法基于空间信息和光流信息进行人脸表情的识别,然而这些辅助识别信息都是二维信息,没有考虑到人脸的表情变化是一种三维的变化过程。为充分挖掘人脸表情识别的深层语义信息,提出了一种基于三维人脸动态信息和光流信息相结合的融合表情识别方法。该方法构建基于人脸深度图像、光流图像和RGB图像的多流卷积神经网络,通过融合3种模态的信息进行人脸表情识别。所提方法在CAER,RAVDESS数据集上进行了充分验证,实验结果表明,其在表情识别性能上优于目前的主流方法,证明了其有效性。 展开更多
关键词 表情识别 多流卷积神经网络 三维人脸动态信息 信息
在线阅读 下载PDF
融合时空域注意力模块的多流卷积人体动作识别 被引量:4
3
作者 吴子依 陈泯融 《华南师范大学学报(自然科学版)》 CAS 北大核心 2023年第3期119-128,共10页
为了更好地提取并融合人体骨架中的时序特征和空间特征,文章构建了融合时空域注意力模块的多流卷积神经网络(AE-MCN):针对目前大多数方法在建模骨架序列相关性时因忽略了人体运动特性而没有对运动尺度进行适当建模的问题,引入了自适应... 为了更好地提取并融合人体骨架中的时序特征和空间特征,文章构建了融合时空域注意力模块的多流卷积神经网络(AE-MCN):针对目前大多数方法在建模骨架序列相关性时因忽略了人体运动特性而没有对运动尺度进行适当建模的问题,引入了自适应选取运动尺度模块,从原尺度动作特征中自适应地提取关键时序特征;为了更好地对特征进行时间维度和空间维度上的建模,设计了融合时空域的注意力模块,通过对高维时空特征进行权重分配,进而帮助网络提取更有效的动作信息。最后,在3个常用的人体动作识别数据集(NTU60、JHMDB和UT-Kinect)上进行了对比实验,以验证AE-MCN网络的有效性。实验结果表明:与ST-GCN、SR-TSL等网络相比,AE-MCN网络都取得了更好的识别效果,证明AE-MCN网络可以对动作信息进行有效的提取与建模,从而获得较好的动作识别性能。 展开更多
关键词 动作识别 人体骨架 自适应选取 注意力机制 多流卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部