期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于组稀疏卡尔曼滤波的多步轨迹预测方法 被引量:5
1
作者 王娜 罗亮 +1 位作者 彭锟 张鑫海 《空军工程大学学报》 CSCD 北大核心 2023年第6期70-77,共8页
提出一种基于组稀疏卡尔曼滤波的机动轨迹多步预测方法。首先引入组稀疏编码,通过一次学习建立简单的多步线性回归预测模型,克服了传统方法未能充分利用历史数据而导致预测精度降低的问题;再利用最小角回归算法来计算该模型的稀疏系数,... 提出一种基于组稀疏卡尔曼滤波的机动轨迹多步预测方法。首先引入组稀疏编码,通过一次学习建立简单的多步线性回归预测模型,克服了传统方法未能充分利用历史数据而导致预测精度降低的问题;再利用最小角回归算法来计算该模型的稀疏系数,进一步改善模型系数估计的准确性;然后改进了卡尔曼滤波算法,并结合上述组稀疏编码算法,来确保预测结果的精确性;最后通过与传统BP、长短时记忆网络和组稀疏编码方法的仿真比较,验证了所提方法的有效性。 展开更多
关键词 多步轨迹预测 组稀疏编码 卡尔曼滤波 最小角回归
在线阅读 下载PDF
基于自注意力机制增强的CNN-LSTM的榴弹轨迹多步超前预测
2
作者 孙溪晨 李伟兵 +2 位作者 黄昌伟 付佳维 冯君 《兵工学报》 EI CAS CSCD 北大核心 2024年第S01期51-59,共9页
由于榴弹飞行轨迹呈现复杂性、时变性和突变性等特点,给近程防空拦截系统带来了极大的挑战。针对目前轨迹数据时空特征捕捉困难且只能进行较少步数预测的问题,提出一种引入自注意力机制的基于卷积神经网络和长短期记忆神经网络(1dimensi... 由于榴弹飞行轨迹呈现复杂性、时变性和突变性等特点,给近程防空拦截系统带来了极大的挑战。针对目前轨迹数据时空特征捕捉困难且只能进行较少步数预测的问题,提出一种引入自注意力机制的基于卷积神经网络和长短期记忆神经网络(1dimension Convolutional neural network-Long short-term memory-Attention, 1D CNN-LSTM-ATT)的一维轨迹多步超前预测模型。将所提模型与CNN-LSTM、LSTM模型分别进行单步和多步预测对比分析;实现对于目标轨迹的从T时刻到未来任意T+K时刻的高精度实时多步超前预测。实验结果表明:无论是单步还是多步预测,1D CNN-LSTM-ATT模型预测的评价指标明显优于其他2个模型;1D CNN-LSTM-ATT模型预测500步(即10 s)的累计预测误差在射程方向为82.83 m,高度方向为11.68 m,横偏方向为0.07 m,为实施弹体拦截及时响应提供了重要保障。 展开更多
关键词 轨迹多步超前预测 深度学习 自注意力机制 CNN-LSTM模型
在线阅读 下载PDF
基于自注意力机制和CNN-LSTM的空战目标机动轨迹预测 被引量:9
3
作者 李战武 张帅 +3 位作者 乔英峰 王强 姜勇 张飞 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第7期209-216,共8页
空战目标机动轨迹是有丰富时空特征的多维时间序列,具有高度复杂性和不确定性。针对现阶段轨迹预测运动学模型建立困难、时序预测的方法难以提取时空特征且只能单一的从T到T+1时刻的顺序式训练的问题,文中提出了一种自注意力机制(self-a... 空战目标机动轨迹是有丰富时空特征的多维时间序列,具有高度复杂性和不确定性。针对现阶段轨迹预测运动学模型建立困难、时序预测的方法难以提取时空特征且只能单一的从T到T+1时刻的顺序式训练的问题,文中提出了一种自注意力机制(self-attention,ATT)和卷积神经网络(convolutional neural network,CNN)-长短期记忆网络(long short-term memory,LSTM)结合的模型(CNN-LSTM-ATT)。离线状态下训练模型,获得的最优模型可以实现目标机动轨迹的高精度预测。文中模型与CNN-LSTM、LSTM模型进行单步预测对比分析,具有良好的单步预测和不同过载机动预测的能力。考虑到电磁干扰和复杂环境导致传输数据的误差和缺失,进行了目标轨迹的5步预测,预测结果和评价指标均优于CNN-LSTM、LSTM模型。 展开更多
关键词 机动轨迹预测 空战数据分析 多层次时间序列 Self-Attention 多步轨迹预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部