期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于sEMG信号的关节力矩NARX预测模型 被引量:5
1
作者 刘强 李玉榕 +1 位作者 杜国川 连章汇 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第11期123-131,共9页
为解决利用力矩传感器控制肌力训练设备所带来的滞后性,利用表面肌电信号(sEMG)超前于运动的特性,设计了基于一组拮抗肌表面肌电信号的关节力矩预测模型。首先搭建康复训练设备为信号采集和实验验证提供条件。将sEMG经过预处理,选择sEM... 为解决利用力矩传感器控制肌力训练设备所带来的滞后性,利用表面肌电信号(sEMG)超前于运动的特性,设计了基于一组拮抗肌表面肌电信号的关节力矩预测模型。首先搭建康复训练设备为信号采集和实验验证提供条件。将sEMG经过预处理,选择sEMG信号的方差特征作为神经网络输入,利用带有外部输入的非线性自回归(NARX)模型的动态循环神经网络,分别建立了基于关节力矩实际值的超前多步(MSA)预测模型和基于模型预测输出(MPO)的预测模型,通过等张和等长测试实验,比较了MSA和MPO模型的力矩预测性能。实验结果表明,两种模型输出预测值和实际值之间都有极强关联性(皮尔逊相关系数均大于0.95)。随着超前预测的步数增加,MSA模型的预测精度降低,但是超前预测的时间增大。在等张和等长测试中,当超前步数分别小于29和35时,MSA预测精度显著高于MPO(p<0.05),但MPO模型在成本和体积上更具优势。综上所述,两种模型均可以准确预测关节力矩,在实际康复训练设备控制中,可根据应用需求选择不同的力矩预测模型。 展开更多
关键词 SEMG NARX 多步超前预测模型 模型预测输出
在线阅读 下载PDF
A hybrid decomposition-boosting model for short-term multi-step solar radiation forecasting with NARX neural network 被引量:4
2
作者 HUANG Jia-hao LIU Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期507-526,共20页
Due to global energy depletion,solar energy technology has been widely used in the world.The output power of the solar energy systems is affected by solar radiation.Accurate short-term forecasting of solar radiation c... Due to global energy depletion,solar energy technology has been widely used in the world.The output power of the solar energy systems is affected by solar radiation.Accurate short-term forecasting of solar radiation can ensure the safety of photovoltaic grids and improve the utilization efficiency of the solar energy systems.In the study,a new decomposition-boosting model using artificial intelligence is proposed to realize the solar radiation multi-step prediction.The proposed model includes four parts:signal decomposition(EWT),neural network(NARX),Adaboost and ARIMA.Three real solar radiation datasets from Changde,China were used to validate the efficiency of the proposed model.To verify the robustness of the multi-step prediction model,this experiment compared nine models and made 1,3,and 5 steps ahead predictions for the time series.It is verified that the proposed model has the best performance among all models. 展开更多
关键词 solar radiation forecasting multi-step forecasting smart hybrid model signal decomposition
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部