期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
成本控制下的快速影响最大化算法 被引量:5
1
作者 刘院英 郭景峰 +1 位作者 魏立东 胡心专 《计算机应用》 CSCD 北大核心 2017年第2期367-372,共6页
针对成本控制下影响最大化时间复杂度高的问题,提出一种快速的最大化算法BCIM。首先提出对初始节点进行多次传播的传播模型;其次选择高影响力节点作为备用种子,并基于近距离影响减少计算节点影响范围的工作量;最后利用动态规划方法在每... 针对成本控制下影响最大化时间复杂度高的问题,提出一种快速的最大化算法BCIM。首先提出对初始节点进行多次传播的传播模型;其次选择高影响力节点作为备用种子,并基于近距离影响减少计算节点影响范围的工作量;最后利用动态规划方法在每组备用种子中最多选择一个种子。仿真实验表明,与随机算法Random、每轮取影响力增量最大的节点的贪心算法Greedy_MII、每轮取影响力增量与成本比值最大的节点的贪心算法Greedy_MICR相比,在影响范围上,BICM接近或优于Greedy_MICR及Greedy_MII,远次于Random;在种子集合的质量上,BCIM、Greedy_MICR、Greedy_MII三者差距较小,但都远远好于Random;在运行时间上,BCIM是Random的几倍,而两个贪心算法都是BCIM的几百倍。BCIM算法能在较短时间内找到更有效的种子集合。 展开更多
关键词 影响最大化 在线社会网络 成本控制 动态规划 多次传播模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部